Advertisement

Transport in Porous Media

, Volume 96, Issue 2, pp 429–438 | Cite as

Permeability of Pore Networks Under Compaction

  • R. E. Rozas
  • S. Díaz
  • J. Quispe
  • S. M. Acuña
  • P. G. ToledoEmail author
Article

Abstract

The characteristic pore length fixes the scale of permeability of a porous medium. For pore networks undergoing strong random compaction, this length becomes singular at transition porosities, revealing a change in the microstructure of the porespace controlling the transport. Nodal balances and lattice Boltzmann simulations of flow in pore networks under compaction show that the scaling between permeability and porosity changes near the transition porosities. Simulation results are compared with experimental permeability data from transparent two-dimensional micromodels of networks decorated with the same pore size distribution. Permeability–porosity data of media undergoing smooth compaction is well described by a single power law. Under strong compaction, however, the scaling between permeability and porosity is possible by traits only, the scaling exponent changes notably at given transition porosities. These behaviors are common to a wealth of permeability–porosity data thus far unexplained.

Keywords

Percolation Permeability Porosity Characteristic length Compaction Pore microstructure Phase changes Transitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambegaokar V., Halperin B.I., Langer J.S.: Hopping conductivity in disordered systems. Phys. Rev. B 4, 2612–2620 (1971)CrossRefGoogle Scholar
  2. Bernabé Y., Brace W.F., Evans B.: Permeability, porosity, and pore geometry of hot-pressed calcite. Mech. Mater. 1, 173–183 (1982)CrossRefGoogle Scholar
  3. Bosl W.J., Dvorkin J., Nur A.: A study of porosity and permeability using a lattice Boltzmann simulation. Geophys. Res. Lett. 25, 1475–1478 (1998)CrossRefGoogle Scholar
  4. Bourbié T., Coussy O., Zinszner B.: Acoustics of Porous Media. Gulf Publ. Co., Houston (1987)Google Scholar
  5. Grucelski A., Pozorski J.: Lattice Boltzmann simulation of fluid flow in porous media of temperature-affected geometry. J. Theor. App. Mech. 50, 193–214 (2012)Google Scholar
  6. Guo Z., Zhao T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)CrossRefGoogle Scholar
  7. Jackson G.W., James D.F.: The permeability of fibrous porous media. Can. J. Chem. Eng. 64, 364–374 (1986)CrossRefGoogle Scholar
  8. Kincaid D.R., Respess J.R., Young D.M., Grimes R.G.: ITPACK 2C: A FORTRAN package for solving large sparse linear systems by adaptive accelerated iterative methods. ACM Trans. Math. Software 8, 302–322 (1982)CrossRefGoogle Scholar
  9. Mavko G., Nur A.: The effect of a percolation threshold in the Kozeny–Carman relation. Geophysics 62, 1480–1482 (1997)CrossRefGoogle Scholar
  10. McKellar M., Wardlaw N.C.: A method of making two dimensional glass micromodels of pore systems. J. Can. Petrol. Technol. 21, 39–41 (1982)Google Scholar
  11. Narváez A., Toledo P.G.: Pore space microstructure evolution of regular sphere packings undergoing compaction and cementation. Transp. Porous Med. 95, 71–89 (2012)CrossRefGoogle Scholar
  12. Pan C., Luo L.S., Miller C.T.: An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. & Fluids 35, 898–909 (2006)CrossRefGoogle Scholar
  13. Patzek T.W., Silin D.B.: Shape factor and hydraulic conductance in noncircular capillaries. I. One-phase creeping flow. J. Colloid Interface Sci. 236, 295–304 (2001)CrossRefGoogle Scholar
  14. Qian Y.H., d’Humieres D., Lalleman P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992)CrossRefGoogle Scholar
  15. Rozas R.E., Toledo P.G.: Pore space microstructure transitions in porous media under compaction. Transp. Porous Med. 91, 741–752 (2012)CrossRefGoogle Scholar
  16. Stauffer D., Aharony A.: Introduction to Percolation Theory. 2nd edn. Taylor & Francis, London (1992)Google Scholar
  17. Toledo P.G., Scriven L.E., Davis H.T.: SPE Formation Evaluation 9, 46–54 (1994)Google Scholar
  18. Wan J., Tokunaga T.K., Tsang C.F., Bodvarsson G.S.: Improved glass micromodel methods for studies of flow and transport in fractured porous media. Water Resour. Res. 32, 1955–1964 (1996)CrossRefGoogle Scholar
  19. Wang M., Chen Q., Kang Q., Pan N., Ben-Naim E.: Nonlinear effective properties of unsaturated porous materials. Int. J. Nonlinear Sci. Numer. Simul. 11, 49–56 (2010)Google Scholar
  20. Wong P.-z., Koplik J., Tomanic J.P.: Conductivity and permeability of rocks. Phys. Rev. B 30, 6606–6614 (1984)CrossRefGoogle Scholar
  21. Zhang X.: Lattice Boltzmann implementation for fluids flow simulation in porous media. IJIGSP 3, 39–45 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • R. E. Rozas
    • 1
  • S. Díaz
    • 4
  • J. Quispe
    • 3
  • S. M. Acuña
    • 2
  • P. G. Toledo
    • 4
    Email author
  1. 1.Institut für Theoretische Physik der Weichen MaterieHeinrich Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.Department of Food EngineeringUniversity of Bio-BioChillánChile
  3. 3.Chemical Engineering DepartmentUniversidad Católica del NorteAntofagastaChile
  4. 4.Chemical Engineering Department and Surface Analysis Laboratory (ASIF)University of ConcepciónConcepciónChile

Personalised recommendations