Transport in Porous Media

, Volume 96, Issue 2, pp 337–351 | Cite as

On the Reconstruction of Darcy Velocity in Finite-Volume Methods

  • G. SrinivasanEmail author
  • K. Lipnikov


The accuracy of particle tracking methods for advective transport in porous media depends in turn upon the accuracy of the computed velocity. In many advanced finite-volume methods used in practical applications, the velocity field is often only accurate up to the first order, and is typically defined only on mesh edges. We develop an inexpensive method for reconstructing a quasi-optimal accuracy-preserving velocity field inside the elements of a polygonal mesh. Numerical verification on quadrilateral meshes shows reduction of L 2-error in comparison with conventional reconstruction strategies.


Mimetic finite differences Streamlines Velocity reconstruction Finite volume 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aavatsmark I.: An introduction to multipoint flux approximations for quadrilateral grids. Comp. Geosci. 6, 405–432 (2002)CrossRefGoogle Scholar
  2. Bear J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)Google Scholar
  3. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)Google Scholar
  4. Brezzi F., Lipnikov K., Shashkov M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedras meshes. SIAM J. Numer. Anal. 43, 1872–1996 (2005)CrossRefGoogle Scholar
  5. Brezzi F., Lipnikov K., Shashkov M., Simoncini V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196, 3682–3692 (2007)CrossRefGoogle Scholar
  6. Carstensen, C.: A posteriori error estimates for the mixed finite element method. Math. Comput. 66(218): 465–476 (1997)Google Scholar
  7. Droniou, J., Eymard, R., Gallouet, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. M3AS: Math. Mod. Meth. Appl. Sci. 20(2): 265–295 (2010)Google Scholar
  8. Haegland H., Dahle H.K., Eigestad G.T., Lie K.A., Aavatsmark I.: Improved streamlines and time-of-flight for streamline simulation on irregular grids. Adv. Water Res. 30(4), 1027–1045 (2007)CrossRefGoogle Scholar
  9. Koennings, S., Tessmar, J., Blunk, T., Göpferich, A.: Confocal microscopy for the elucidation of mass transport mechanisms involved in protein release from lipid-based matrices. Pharmaceut. Res. 24(7): 1325–1335 (2007)Google Scholar
  10. Kuznetsov, Y., Repin, S.: New mixed finite element method on polygonal and polyhedral meshes. Rus. J. Numer. Anal. Math. Mod. 18(3): 261–278 (2003)Google Scholar
  11. Matringe S.F., Juanes R., Tchelepi H.A.: Robust streamline tracing for the simulation of porous media flow on general triangular and quadrilateral grids. J. Comput. Phys. 219(2), 9921012 (2006)CrossRefGoogle Scholar
  12. Matringe, S.F., Juanes, R., Tchelepi, H.A.: Tracing streamlines on unstructured grids from finite volume discretizations. Soc. Petrol. Engrs J. 13(4): 423–431 (2008)Google Scholar
  13. Painter, S.L., Gable, C.W., Kelkar, S.: Pathline tracing on fully unstructured control volume grids. LANL Technical Report LA-UR-11-11046 (2011)Google Scholar
  14. Pinder G.F., Gray W.G.: Essentials of Multiphase Flow and Transport in Porous Media. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  15. Pollock D.W.: Semi-analytical computation of path lines for finite-difference models. Ground Water 26(6), 743–750 (1988)CrossRefGoogle Scholar
  16. Prévost, M., Edwards, M.G., Blunt, M.J.: Streamline tracing on curvilinear structured and unstructured grids. Proceedings of the 2001 SPE Reservoir Simulation Symposium, SPE 66347, Houston (2001)Google Scholar
  17. Rado, T.: Uber den Begriff der Riemannschen Flachen. Acta Szeged 2: 101–121, (1925)Google Scholar
  18. Rueda, F.J., Schladow, S.G., Clark, J.F.: Mechanisms of contaminant transport in a multi-basin lake, Ecol. Appl. 18(8): A72–A88 (2008)Google Scholar
  19. Stein, D., van der Heyden, F.H.J., Koopmans, W.J.A., Dekker, C.: Pressure-driven transport of confined DNA polymers in fluidic channels. Proc. Natl. Acad. Sci. 103(43): 15853–15858 (2006)Google Scholar
  20. Tompson, A.F.B., Vomvoris, E.G., Gelhar, L.W.: Numerical Simulation of Solute Transport in Randomly Heterogeneous Porous Media: Motivation, Model Development, and Application. UCID 21281. Lawrence Livermore National Laboratory, Livermore (1987)Google Scholar
  21. Tompson A.F.B., Gelhar L.W.: Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media. Water Resour. Res. 26(10), 25412562 (1990)CrossRefGoogle Scholar
  22. Zhang, Y., King, M.J., Datta-Gupta, A.: Robust Streamline Tracing Using Intercell Fluxes in Locally Refined and Unstructured Grids. SPE Reservoir Simulation Symposium, SPE 140695-MS, The Woodlands (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2012

Authors and Affiliations

  1. 1.Division of TheoreticalLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations