Advertisement

Transport in Porous Media

, Volume 96, Issue 2, pp 271–294 | Cite as

Numerical Simulation of 3D Liquid–Gas Distribution in Porous Media by a Two-Phase TRT Lattice Boltzmann Method

  • Alain GentyEmail author
  • Valérie Pot
Article

Abstract

The 3D description of the soil structure at the pore scale level can help to elucidate the biological functioning of soil. The water–air distribution in the 3D-pore space is of particular interest because it determines the diffusion pathways of nutrients and the localisation of active soil microorganisms. We used the Shan–Chen interparticle-potential approach to simulate spontaneous phase separation in complex academic and real 3D-porous media using the advanced TRT lattice Boltzmann scheme. The equation of state and phase diagram were calculated and the model was verified using hydrostatic laws. The 3D pattern of water/air interface in two complex academic pore geometries was accurately computed. Finally, 3D maps of static liquid–gas distribution were simulated in a real 3D X-ray computed tomography image obtained from an undisturbed soil column sampled in a silty clay loam soil. The simulated soil sample of 1.7 cm3 was described at a voxel-resolution of 60 μm. The range of the simulated saturations (from 0.5 to 0.9) was in a good agreement with the expected saturations calculated from the phase diagram.

Keywords

Lattice Boltzmann method Water meniscus TRT Shan–Chen Porous media 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrenholz, B.: Massively parallel simulations of multiphase and multicomponent flows using lattice Boltzmann methods. PhD Thesis. Technischen Universitat Carolo-Wilhelmina, Braunschweig (2009)Google Scholar
  2. Aidun C.K., Clausen J.R.: Lattice–Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439–472 (2010)CrossRefGoogle Scholar
  3. Bashforth F., Adams J.C.: An Attempt to Test the Theories of Capillary Action. Cambridge University Press, Cambridge (1883)Google Scholar
  4. Bear J., Rubinstein B., Fel L.: Capillary pressure curve for liquid menisci in a cubic assembly of spherical particles below irreducible saturation. Transp. Porous Med. 89(1), 63–73 (2011)CrossRefGoogle Scholar
  5. Bouasse H.: Capillarité et phénomènes superficiels. Delagrave Ed., Paris (1924)Google Scholar
  6. Chang Q., Alexander J.I.D.: Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method. Microfluid. Nanofluid. 2, 309–326 (2006)CrossRefGoogle Scholar
  7. d’Humières D., Ginzburg I., Krafczyk M., Lallemand P., Luo L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. A 360, 437–451 (2002)CrossRefGoogle Scholar
  8. d’Humières D., Ginzburg I.: Viscosity independent numerical errors for Lattice Boltzmann models: from recurrence equations to “magic” collision numbers. Comput. Math. Appl. 58(5), 823–840 (2009)CrossRefGoogle Scholar
  9. Gennes P.G.: Wetting: static and dynamics. Rev. Mod. Phys. 57(3), 827–863 (1985)CrossRefGoogle Scholar
  10. Gennes P.G., Brochard-Wyart F., Quéré D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York (2004)Google Scholar
  11. De Maio A., Palpacelli S., Succi S.: A new boundary condition for three-dimensional Lattice Boltzmann simulations of capillary filling in rough micro-channels. Commun. Comput. Phys. 9(5), 1284–1292 (2011)Google Scholar
  12. Dong B., Yan Y.Y., Li W.Z.: LBM simulation of viscous fingering phenomenon in immiscible displacement of two fluids in porous media. Transp. Porous Med. 88, 293–314 (2011)CrossRefGoogle Scholar
  13. Frisch U., d’Humières D., Hasslacher B., Lallemand P., Pomeau Y., Rivet J.P.: Lattice gas hydrodynamics in two and threee dimensions. Complex Systems 1, 649–707 (1987)Google Scholar
  14. Ginzburg I., d’Humières D.: Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68(6), 066614 (2003)CrossRefGoogle Scholar
  15. Ginzburg I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28, 1171–1195 (2005)CrossRefGoogle Scholar
  16. Ginzburg I., Verhaeghe F., d’Humières D.: Two-relaxation time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3, 427–478 (2008a)Google Scholar
  17. Ginzburg I., Verhaeghe F., d’Humières D.: Study of simple hydrodynamics solutions with the two-relaxation-times lattice Boltzmann scheme. Commun. Comput. Phys. 3, 519–581 (2008b)Google Scholar
  18. Ginzburg I., d’Humières D., Kuzmin A.: Optimal stability of advection-diffusion lattice Boltzmann models with two-relaxation times for positive/negative equilibrium. J. Stat. Phys. 139, 1090–1143 (2010)CrossRefGoogle Scholar
  19. Gustensen A.K., Rothman D.H., Zaleski S., Anetti G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43, 4320–4327 (1991)CrossRefGoogle Scholar
  20. Gvirtzman H., Roberts P.V.: Pore scale spatial analysis of two immiscible fluids in porous media. Water Resour. Res. 27(6), 1165–1176 (1991)CrossRefGoogle Scholar
  21. Hartland S., Hartley R.W.: Axisymmetric Fluid–Liquid Interfaces. Elsevier, Amsterdam (1976)Google Scholar
  22. He X., Chen S., Doolen G.D.: A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146, 282–300 (1998)CrossRefGoogle Scholar
  23. Hilpert M., Miller C.T.: Pore-morphology-based simulation of drainage in totally wetting porous media. Adv. Water Resour. 24, 243–255 (2001)CrossRefGoogle Scholar
  24. Huang H., Thorne D.T., Schaap M.G., Sukop M.C.: Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E 76, 066701 (2007)CrossRefGoogle Scholar
  25. Huang H., Shuaishuai Z.L., Lu X.Y.: Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media. Int. J. Numer. Meth. Fluids 61, 341–354 (2009)CrossRefGoogle Scholar
  26. Huang H., Wang L., Lu X.Y.: Evaluation of three lattice Boltzmann models for multiphase flows in porous media. Comput. Math. Appl. 61, 3606–3617 (2011)CrossRefGoogle Scholar
  27. Jonquière A.: Note sur la série \({\sum_{n=1}^{n=\infty} \frac{x^n}{n^s}}\) . B. Soc. Math. Fr. 17, 142–152 (1889)Google Scholar
  28. Kemmit S.J.K., Lnyon C.V., Waite I.S., Wen Q., Addiscott T.M., Bird N.R.A., O’Donnell A.G., Brookes P.C.: Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol. Biochem. 40, 61–73 (2008)CrossRefGoogle Scholar
  29. Kobayashi K., Inamuro T., Ogino F.: Numerical simulation of advancing interface in a micro heterogeneous channel by Lattice Boltzmann Method. J. Chem. Eng. Jpn. 39(3), 257–266 (2006)CrossRefGoogle Scholar
  30. Kuzmin, A.: Multiphase simulations with lattice boltzmann scheme. PhD Thesis, University of Calgary, Calgary (2009)Google Scholar
  31. Lallemand P., Luo L.S.: Theory of the lattice Boltzmann method: dispersion, isotropy, Galilean invariance and stability. Phys. Rev. E 61, 6546 (2000)CrossRefGoogle Scholar
  32. Latva-kokko M., Rothman D.H.: Static contact angle in lattice Boltzmann models of immiscible fluids. Phys. Rev. E 72, 046701 (2005)CrossRefGoogle Scholar
  33. Lin C.L., Videla A.R., Miller J.D.: Advanced three-dimensional multiphase flow simulation in porous media reconstructed from X-ray microtomography using the He-Chen-Zhang lattice Boltzmann model. Flow Meas. Instrum. 21, 255–261 (2010)CrossRefGoogle Scholar
  34. Malcolm J.D., Paynter H.M.: Simultaneous determination of contact angle and interfacial tension from sessile drop measurements. J. Colloid Interf. Sci. 82(2), 269–275 (1981)CrossRefGoogle Scholar
  35. Martys N.S., Chen H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53(1), 743–750 (1996)CrossRefGoogle Scholar
  36. Melrose J.C.: Model calculations for capillary condensation. Am. Inst. Chem. Eng. J. 12(5), 986–994 (1966)CrossRefGoogle Scholar
  37. Monga O., Bousso M., Garnier P., Pot V.: 3D geometric structures and biological activity: application to microbial soil organic matter decomposition in pore space. Ecol. Model. 216, 291–302 (2008)CrossRefGoogle Scholar
  38. Monga O., Bousso M., Garnier P., Pot V.: Using pore space 3D geometrical modelling to simulate biological activity: impact of soil structure. Comput. Geosci. 35, 1789–1801 (2009)CrossRefGoogle Scholar
  39. Or D., Smets B.F., Wraith J.M., Dechesne A., Friedman S.P.: Physical constraints affecting bacterial habitats and activity in unsaturated porous media—a review. Adv. Water Resour. 30, 1505–1527 (2007)CrossRefGoogle Scholar
  40. Orr F.M., Scriven L.E., Rivas A.P.: Pendular rings between solids: meniscus properties and capillary force. J. Fluid Mech. 67, 723–742 (1975)CrossRefGoogle Scholar
  41. Padday J.F.: Tables of the profiles of axisymmetric menisci. J. Electroanal. Chem. 37, 313–316 (1972)CrossRefGoogle Scholar
  42. Prat M.: On the influence of pore shape, contact angle and film flows on drying of capillary porous media. Int. J. Heat Mass Tran. 50, 1455–1468 (2007)CrossRefGoogle Scholar
  43. Premnath K.N., Abraham J.: Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow. J. Comput. Phys. 224, 539–559 (2007)CrossRefGoogle Scholar
  44. Raiskinmäki P., Koponen A., Merikoski J., Timonen J.: Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method. Comp. Mater. Sci. 18, 7–12 (2000)CrossRefGoogle Scholar
  45. Ramstad T., Øren P.E., Bakke S.: Simulation of two-phase flow in reservoir rocks using a lattice Boltzman method. SPE J. 15(4), 917–927 (2010)Google Scholar
  46. Rayleigh J.W.S.: On the theory of the capillary tube. Proc. R. Soc. Lond. A 92, 184–195 (1916)CrossRefGoogle Scholar
  47. Rose W.: Volumes and surface areas of pendular rings. J. Appl. Phys. 29(4), 687–691 (1958)CrossRefGoogle Scholar
  48. Schimel J.P., Weintraub M.N.: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem. 35, 549–563 (2003)CrossRefGoogle Scholar
  49. Schjonning P., Thomsen I.K., Moldrup P., Christensen B.T.: Linking soil microbial activity to water and air-phase contents and diffusivities. Soil Sci. Soc. Am. J. 67, 156–165 (2003)CrossRefGoogle Scholar
  50. Schmieschek S., Hartinssg J.: Contact angle determination in multicomponent lattice Boltzmann simulations. Commun. Comput. Phys. 9(5), 1165–1178 (2011)Google Scholar
  51. Shan X., Chen H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815–1820 (1993)CrossRefGoogle Scholar
  52. Shan X., Chen H.: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49(4), 2941–294 (1994)Google Scholar
  53. Smucker A.J.M., Park E.J., Dorner J., Horn R.: Soil micropore development and contributions to soluble carbon transport within macroaggregates. Vadose Zone J. 6, 282–290 (2007)CrossRefGoogle Scholar
  54. Sukop M.C., Or D.: Lattice Boltzmann method for modeling liquid–vapor interface configurations in porous media. Water Resour. Res. 40, W01509 (2004). doi: 10.1029/2003WR002333 CrossRefGoogle Scholar
  55. Swift M.R., Orlandini E., Osborn W.R., Yeomans J.M.: Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54, 5041–5052 (1996)CrossRefGoogle Scholar
  56. Vogel H.J., Tölke J., Schulz V.P., Krafczyk M., Roth K.: Comparison of a lattice-Boltzmann model, a full-morphology model, and a pore network model for determining capillary pressure-saturation relationships. Vadose Zone J. 4, 380–388 (2005)CrossRefGoogle Scholar
  57. Wiklund H.S., Lindström S.B., Uesaka T.: Boundary condition considerations in Lattice Boltzmann formulations of wetting binary fluids. Comput. Phys. Commun. 182(10), 2192–2200 (2011)CrossRefGoogle Scholar
  58. Yan Y.Y., Zu Y.Q.: A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio. J. Comput. Phys. 227, 763–775 (2007)CrossRefGoogle Scholar
  59. Yoshino M., Mizutani Y.: Lattice Boltzmann simulation of liquid–gas flow through solid bodies in a square duct. Math. Comput. Simul. 72, 264–269 (2006)CrossRefGoogle Scholar
  60. Yu Z., Fan L.S.: Multirelaxation–time interaction-potential-based lattice Boltzmann model for two-phase flow. Phys. Rev. E 82, 046708 (2010)CrossRefGoogle Scholar
  61. Zhang R.L., Di Q.F., Wang X.L., Gu C.Y: Numerical study of wall wettabilities and topography on drag reduction effect in micro-channel flow by Lattice Botzmann Method. J. Hydrodyn. 22(3), 366–372 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Commissariat à l’Énergie Atomique et aux Énergies AlternativesCEA-Saclay, DEN DANS DM2S STMFGif sur Yvette CedexFrance
  2. 2.INRA, AgroParis TechUMR 1091 EGCThiverval-GrignonFrance

Personalised recommendations