Advertisement

Transport in Porous Media

, Volume 96, Issue 2, pp 221–235 | Cite as

Electrokinetic Salt Removal from Porous Building Materials Using Ion Exchange Membranes

  • K. Kamran
  • M. van Soestbergen
  • L. PelEmail author
Article

Abstract

The removal of salt from porous building materials under the influence of an applied voltage gradient normally results in high pH gradients due to the formation of protons and hydroxyl ions at the electrodes. The formed acidic and alkaline regions not only lead to disintegration of the porous material, but also affect the salt transport. In this work we use ion exchange membranes between the electrodes and the porous material to prevent the protons and hydroxyl ions from intruding into the material. The porous material used in this study is fired clay brick, which has been saturated with a 4 mol/l sodium chloride solution prior to the desalination treatment. In order to experimentally determine the salt removal, we monitored the sodium ion concentration profiles across the material with nuclear magnetic resonance (NMR). In addition, we present theoretical predictions for the salt removal according to a model based on the Poisson–Nernst–Planck theory for ion transport. From the work reported here, we can conclude that the use of ion exchange membranes to desalinate porous building materials is not useful since it reduces the salt removal rate to such an extent that desalination with poultices, which is driven by diffusion only, is more efficient. The reason behind this is twofold. First, the ion exchange membranes provide a penalty for the ions to leave the material. Second, in the absence of acidic and alkaline regions, the salt concentration at the edges of the porous material will reduce to almost zero, which leads to a locally increased electrical resistance, and thus a reduction of the electrical field in the bulk of the material. Due to this reduction the effect of the applied voltage gradient across the material vanishes, and the salt removal is limited by diffusion.

Keywords

Electrokinetic remediation Fired clay brick Ion exchange membranes Nuclear magnetic resonance Desalination 

Nomenclature

B0

Static magnetic field (T)

C*

Dimensionless ion concentration

Ci

Ion concentration (mol/m3)

D

Diffusion coefficient (m2/s)

D*

Ambipolar diffusivity (m2/s)

F

Faraday constant (C/mol)

fl

Larmor frequency (MHz)

I

Electrical current density (A/m2)

J

Ion flux (mol/(m2s))

L

Sample length (m)

R

Gas constant (J/(mol K))

T

Temperature (K)

T

Time (s)

V

Voltage (Volt)

x

Spatial coordinate (m)

z

Valence number

ΔVD

Donnan potential (Volt)

ρ

Dimensionless space charge density

κ

Electrolyte conductivity (S/m)

η

Desalination efficiency (%)

μ

Ionic mobility (m2/(sV))

γ

Gyromagnetic ratio (MHz/T)

ρM

Ion exchange capacity (meq/g)

τ

Tortuosity

Sub- and Superscripts

aq

Aqueous solution

Cl

Chloride

H

Protons

M

Membrane

Na

Sodium

OH

Hydroxyl ions

0

Initial condition

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam A.: The Principles of Nuclear Magnetism. Clarendon, Oxford (1961)Google Scholar
  2. Atkins P., de Paula J.: Atkins Physical Chemistry. Oxford University Press, London (2002)Google Scholar
  3. Bard A.J., Faulkner L.R.: Electrochemical methods. Wiley, New York (2001)CrossRefGoogle Scholar
  4. Bazant M.Z., Thorton K., Ajdari A.: Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70, 021506 (2004)CrossRefGoogle Scholar
  5. Bazant M.Z., Chu K.T., Bayly B.J.: Current-voltage relations for electrochemical thin films. SIAM J. Appl. Math. 65, 1463–1484 (2005)CrossRefGoogle Scholar
  6. Beddoe R.E., Dorner H.W.: Modelling acid attack on concrete: Part I. The essential mechanisms. Cem. Concr. Res. 35, 2333–2339 (2005)CrossRefGoogle Scholar
  7. Biesheuvel P.M., van der Wal A.: Membrane capacitive deionization. J. Membrane Sci. 346, 256–262 (2010)CrossRefGoogle Scholar
  8. Biesheuvel P.M., Franco A.A., Bazant M.Z.: Diffuse charge effects in fuel cell membranes. J. Electrochem. Soc. 156, B225–B233 (2009a)CrossRefGoogle Scholar
  9. Biesheuvel P.M., van Soestbergen M., Bazant M.Z.: Imposed currents in galvanic cells. Electrochim Acta 54, 4857–4871 (2009b)CrossRefGoogle Scholar
  10. Bonnefont A., Argoul F., Bazant M.Z.: Analysis of diffuse-layer effects on time-dependent interfacial kinetics. J. Electroanal. Chem. 500, 52–61 (2001)CrossRefGoogle Scholar
  11. Chu K.T., Bazant M.Z.: Electrochemical thin films at and above the classical limiting current. SIAM J. Appl. Math. 65, 1485–1505 (2005)CrossRefGoogle Scholar
  12. Coussy O., Eymard R.: Non-linear binding and the diffusion-migration test. Trans. Porous. Med. 53, 51–57 (2003)CrossRefGoogle Scholar
  13. Crank J.: The Mathematics of Diffusion. Clarendon, Oxford (1990)Google Scholar
  14. Deen W.M.: Analysis of Transport Phenomena. Oxford University Press, Oxford (1998)Google Scholar
  15. Dlugolecki P., Nymeijer K., Metz S., Wesseling M.: Current status of ion exchange membranes for power generation from salinity gradients. J. Membrane Sci. 319, 214–222 (2008)CrossRefGoogle Scholar
  16. Farmer J.C., Fix D.V., Mack G.V., Pekala R.W., Poco J.F.: Capacitive deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes. J. Electrochem. Soc. 143, 159–169 (1996)CrossRefGoogle Scholar
  17. Hahn E.L.: Spin Echoes. Phys. Rev. 80, 580–594 (1950)CrossRefGoogle Scholar
  18. Jacobs R.A., Sengun M.Z., Hicks R.E., Probstein R.F.: Model and experiments on soil remediation by electric fields. J. Environ. Sci. Health A29, 1933–1955 (1994)Google Scholar
  19. Johnson A.M., Newman J.: Desalting by means of porous carbon electrodes. J. Electrochem. Soc. 118, 510–517 (1971)CrossRefGoogle Scholar
  20. Kamran K., Pel L., Sawdy A., Huinink H.P., Kopinga K.: Desalination of porous building materials by electrokinetics: an NMR study. Mater. Struct. 45, 297–308 (2012a)CrossRefGoogle Scholar
  21. Kamran K., van Soestbergen M., Huinink H.P., Pel L.: Inhibition of electrokinetic ion transport in porous materials due to potential drops induced by electrolysis. Electrochimica Acta 78, 229–235 (2012b)CrossRefGoogle Scholar
  22. Kim S., Kim K.: Monitoring of electrokinetic removal of heavy metals in tailing-soils using sequential extraction analysis. J. Hazard. Mater. B85, 195–211 (2001)CrossRefGoogle Scholar
  23. Levich, V.G.: Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs, p. 281 (1962)Google Scholar
  24. Lu X., Viljanen M.: Determination of salt diffusion coefficient in brick: analytical methods. Trans. Porous. Med. 49, 241–246 (2002)CrossRefGoogle Scholar
  25. Newman J.S.: Electrochemical Systems. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
  26. Nikonenko V.V., Pismenskaya N.D., Belova N.D., Sistat P., Huguet P., Pourcelly P., Larchet C.: Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Adv. Coll. Int. Sci. 160, 101–123 (2010)CrossRefGoogle Scholar
  27. Nystrøm G.M., Ottosen L.M., Villumsen A.: Test of experimental set-ups for electrodialytic removal of Cu, Zn, Pb and Cd from different contaminated harbour sediments. Eng. Geol. 77, 349–357 (2005)CrossRefGoogle Scholar
  28. Ottosen L.M., Rörig-Dalgaard I.: Desalination of a brick by application of an electric DC field. Mater Struct. 42, 961–971 (2009)CrossRefGoogle Scholar
  29. Ottosen L.M., Hansen H.K., Hansen C.B.: Water splitting at ion-exchange membranes and potential differences in soil during electrodialytic soil remediation. J. App. Electrochem. 30, 1199–1207 (2000)CrossRefGoogle Scholar
  30. Pel L., Kopinga K., Kaasschieter E.F.: Saline absorption in calcium-silicate brick observed by NMR scanning. J. Phys. D: Appl. Phys. 33, 1380–1385 (2000)CrossRefGoogle Scholar
  31. Porada S., Sales B.B., Hamelers H.V.M., Biesheuvel P.M.: Water desalination with wires. Phys. Chem. Lett. 3, 1613–1618 (2012)CrossRefGoogle Scholar
  32. Prieve D.C.: Changes in zeta potential caused by a dc electric current for thin double layers. Colloids Surf. A 250, 67–77 (2004)CrossRefGoogle Scholar
  33. Probstein R.F., Hicks R.E.: Removal of contaminants from soils by electric fields. Science 260, 298 (1993)CrossRefGoogle Scholar
  34. Ribeiro A.B., Mexia J.T.: A dynamic model for the electrokinetic removal of copper from a polluted soil. J. Hazard. Mater. 56, 257–271 (1997)CrossRefGoogle Scholar
  35. Sghaier N., Prat M., Nasrallah S.B.: On ions transport during drying in a porous medium. Trans. Porous. Med. 67, 243–274 (2007)CrossRefGoogle Scholar
  36. Smyrl W.H., Newman J.: Double layer structure at the limiting current. Trans. Faraday Soc. 63, 207–216 (1967)CrossRefGoogle Scholar
  37. van Soestbergen M.: Diffuse layer effects on the current in galvanic cells containing supporting electrolyte. Electrochimica Acta 55, 1848–1854 (2010)CrossRefGoogle Scholar
  38. van Soestbergen M., Biesheuvel P.M., Bazant M.Z.: Diffuse-charge effects on the transient response of electrochemical cells. Phys. Rev. E 81, 021503 (2010)CrossRefGoogle Scholar
  39. Vetter K.J.: Electrochemical Kinetics. Academic Press, New York (1967)Google Scholar
  40. Viadero R.C., Reed B.E., Berg M., Ramsey : A Laboratory-scale study of applied voltage on the electrokinetic separation of lead from soils. J. Separation Sci. Tech. 33, 1833–1859 (1998)CrossRefGoogle Scholar
  41. Wada S.I., Umegaki Y.: Major ion and electrical potential distribution in soil under electrokinetic remediation. Environ. Sci. Technol. 36, 2151–2155 (2001)CrossRefGoogle Scholar
  42. Yang G.C.C., Lin S.: Removal of lead from a silt loam soil by electrokinetic remediation. J. Hazard. Mater. 58, 285–299 (1998)CrossRefGoogle Scholar
  43. Yeung A.T., Gu Y.: A review on techniques to enhance electrochemical remediation of contaminated soils. J. Hazard. Mater. 195, 11–29 (2001)CrossRefGoogle Scholar
  44. Zhao R., Biesheuvel P.M., Miedema H., Bruning H., van der Wal A.J.: Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. Phys. Chem. Lett. 1, 205–210 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Materials innovation instituteDelftThe Netherlands

Personalised recommendations