Skip to main content
Log in

Aspects of Permeability in Modelling of Concrete Exposed to High Temperatures

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The development of heat and moisture transport in concrete is critical to the development of pore pressures, which are thought to be a primary driver of damage and thermal spalling in concrete exposed to elevated temperatures. In the light of uncertainty and variation in the value of certain material properties and constitutive or parametric descriptions found in the literature, various sets of numerical experiments were conducted to investigate the significance of the intrinsic permeability, the evolution of permeability related to temperature and the relative permeability of the fluid phases as functions of saturation in predicting and analysing the behaviour of concrete drying under normal, low temperature, isothermal conditions and under exposure to very high temperature conditions as might be encountered during a fire. A fully coupled hygro-thermo-mechanical finite element model for concrete was employed with the permeability values and parametric functions altered in the model as required. Results of mass loss and the development of gas pressures with time were considered in relation to the potential for the occurrence of damage and thermal spalling, which is thought to be variously related to these processes. The analyses showed that permeability, and its variation with temperature, are very important in controlling the predicted behaviour at both low and high temperatures. Most significant of all were the relationships chosen to define the relative permeabilities. These were shown to strongly control the results of analyses of both low and high temperature problems and to potentially imply apparently different permeability values for the same concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baroghel-Bouny V., Mainguy M., Lassabatere T., Coussy O.: Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cem. Conc. Res. 29, 1225–1238 (1999)

    Article  Google Scholar 

  • Bažant Z.P., Thonguthai W.: Pore pressure and drying of concrete at high temperature. J. Eng. Mech. Div. ASME 104(EM5), 1059–1079 (1978)

    Google Scholar 

  • Choinska M., Khelidj A., Chatzigeorgiou G., Pijaudier-Cabot G.: Effects and interactions of temperature and stress-level related damage on permeability of concrete. Cem. Conc. Res. 37(1), 79–88 (2007)

    Article  Google Scholar 

  • Chung J.H., Consolazio G.R., McVay M.C.: Finite element stress analysis of a reinforced high-strength concrete column in severe fires. Comput. Struct. 84(21), 1338–1352 (2006)

    Article  Google Scholar 

  • Civan F.: Correlation of permeability loss by thermally-induced compaction due to grain expansion. Petrophysics 49(4), 351–361 (2008)

    Google Scholar 

  • Dal Pont S., Schrefler B.A., Ehrlacher A.: Intrinsic permeability evolution in high temperature concrete: an experimental and numerical analysis. Transp. Porous Media 60(1), 43–74 (2005)

    Article  Google Scholar 

  • Davie C.T., Pearce C.J., Bicanic N.: Coupled heat and moisture transport in concrete at elevated temperatures: effects of capillary pressure and adsorbed water. Numer Heat Transf, A 49(8), 733–763 (2006)

    Article  Google Scholar 

  • Davie, C.T., Pearce, C.J., Bicanic, N.: A fully generalised, coupled, multi-phase, hygro-thermo-mechanical model for concrete. Mater. Struct. 43(Supp. 1), 13–33 (2010)

    Google Scholar 

  • Dwaikat M.B., Kodur V.K.R.: Hydrothermal model for predicting fire-induced spalling in concrete structural systems. Fire Saf. J. 44(3), 425–434 (2009). doi:10.1016/j.firesaf.2008.09.001

    Article  Google Scholar 

  • England G.L., Khoylou N.: Moisture flow in concrete under steady state non-uniform temperature states: experimental observations and theoretical modelling. Nucl. Eng. Des. 156, 83–107 (1995)

    Article  Google Scholar 

  • Galle C., Sercombe J.: Permeability and pore structure evolution of silico-calcareous and hematite high-strength concretes submitted to high temperatures. Mater. Struct. 34(244), 619–628 (2001). doi:10.1007/bf02482129

    Article  Google Scholar 

  • Gawin D., Majorana C.E., Schrefler B.A.: Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mech. Coh.-Fric. Mat. 4, 37–74 (1999)

    Article  Google Scholar 

  • Gawin D., Pesavento F., Schrefler B.A.: Simulation of damage-permeability coupling in hygro-thermo-mechanical analysis of concrete at high temperature. Commun. Numer. Methods Eng. 18, 113–119 (2002)

    Article  Google Scholar 

  • Gawin D., Pesavento F., Schrefler B.A.: Modelling of deformations of high strength concrete at elevated temperatures. Mater. Struct. 37, 218–236 (2004)

    Google Scholar 

  • Gawin D., Pesavento F., Schrefler B.A.: Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I. Hydration and hygro-thermal phenomena. Int. J. Num. Methods Eng. 67(3), 299–331 (2006a)

    Article  Google Scholar 

  • Gawin D., Pesavento F., Schrefler B.A.: Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete. Comput. Methods Appl. Mech. Eng. 195(41–43), 5707–5729 (2006b)

    Article  Google Scholar 

  • Harmathy, T.Z.: Effect of moisture on the fire endurance of building materials. In: Moisture in materials in relation to fire tests. Special Technical Publication, pp. 74–95. ASTM, Philadelphia, (1965)

  • Hertz K.D.: Limits of spalling of fire-exposed concrete. Fire Saf. J. 38, 103–116 (2003)

    Article  Google Scholar 

  • Ichikawa Y., England G.L.: Prediction of moisture migration and pore pressure build-up in concrete at high temperatures. Nucl. Eng. Des. 228(1–3), 245–259 (2004)

    Article  Google Scholar 

  • Jason L., Pijaudier-Cabot G., Ghavamian S., Huerta A.: Hydraulic behaviour of a representative structural volume for containment buildings. Nucl. Eng. Des. 237(12-13), 1259–1274 (2007). doi:10.1016/j.nucengdes.2006.09.035

    Article  Google Scholar 

  • Jooss M., Reinhardt H.W.: Permeability and diffusivity of concrete as function of temperature. Cem. Concr. Res. 32(9), 1497–1504 (2002)

    Article  Google Scholar 

  • Kalifa P., Chene G., Galle C.: High-temperature behaviour of HPC with polypropylene fibres: from spalling to microstructure. Cem. Conc. Res. 31(10), 1487–1499 (2001)

    Article  Google Scholar 

  • Kalifa P., Menneteau F.-D., Quenard D.: Spalling and pore pressure in HPC at high temperatures. Cem. Conc. Res. 30, 1915–1927 (2000)

    Article  Google Scholar 

  • Kanema M., de Morais M.V.G., Noumowe A., Gallias J.L., Cabrillac R.: Experimental and numerical studies of thermo-hydrous transfers in concrete exposed to high temperature. Heat Mass Transf. 44(2), 149–164 (2007). doi:10.1007/s00231-006-0212-9

    Article  Google Scholar 

  • Monlouis-Bonnaire J.P., Verdier J., Perrin B.: Prediction of the relative permeability to gas flow of cement-based materials. Cem. Concr. Res. 34(5), 737–744 (2004)

    Article  Google Scholar 

  • Noumowe A.N., Siddique R., Debicki G.: Permeability of high-performance concrete subjected to elevated temperature (600 degrees C). Constr. Build. Mater. 23(5), 1855–1861 (2009). doi:10.1016/j.conbuildmat.2008.09.023

    Article  Google Scholar 

  • Pearce, C.J., Davie, C.T., Bicanic, N.: Effects of fluid transport on the integrity of concrete structures. In: Owen, D.R.J., Oñate, E., Suárez, B. (eds.) Proceedings of VIII International Conference on Computational Plasticity (COMPLAS VIII), CIMNE, Barcelona, pp. 181–184. CIMNE, Barcelona (2005)

  • Phan L.T., Lawson J.R., Davis F.L.: Effects of elevated temperature exposure on heating characteristics, spalling and residual properties of high performance concrete. Mater. Struct. 34, 83–91 (2001)

    Article  Google Scholar 

  • Picandet V., Khelidj A., Bastian G.: Effect of axial compressive damage on gas permeability of ordinary and high-performance concrete. Cem. Conc. Res. 31(11), 1525–1532 (2001)

    Article  Google Scholar 

  • Schneider U., Herbst H.J.: Permeabilität und Porosität von Beton bei hohen Temperaturen. Deutschen Ausschuss für Stahlbeton 403, 23–52 (1989)

    Google Scholar 

  • Schrefler B.A., Brunello P., Gawin D., Majorana C.E., Pesavento F.: Concrete at high temperature with application to tunnel fire. Comput. Mech. 29, 43–51 (2000)

    Article  Google Scholar 

  • Souley M., Homand F., Pepa S., Hoxha D.: Damage-induced permeability changes in granite: a case example at the URL in Canada. Int. J. Rock Mech. Min. Sci. 38(2), 297–310 (2001)

    Article  Google Scholar 

  • Tenchev R., Purnell P.: An application of a damage constitutive model to concrete at high temperature and prediction of spalling. Int. J. Solids Struct. 42(26), 6550–6565 (2005)

    Article  Google Scholar 

  • Tenchev R.T., Li L.Y., Purkiss J.A.: Finite element analysis of coupled heat and moisture transfer in concrete subjected to fire. Num. Heat Transf. A 39, 685–710 (2001)

    Article  Google Scholar 

  • Ulm F.-J., Coussy O., Bažant Z.P.: The “Chunnel” fire. I: chemoplastic softening in rapidly heated concrete. J. Eng. Mech. 125(3), 272–282 (1999)

    Article  Google Scholar 

  • van Genuchten M.T.: A closed-form equation for prediciting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • Zeiml M., Lackner R., Leithner D., Eberhardsteiner J.: Identification of residual gas-transport properties of concrete subjected to high temperatures. Cem. Concr. Res. 38(5), 699–716 (2008). doi:10.1016/j.cemconres.2008.01.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Davie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davie, C.T., Pearce, C.J. & Bićanić, N. Aspects of Permeability in Modelling of Concrete Exposed to High Temperatures. Transp Porous Med 95, 627–646 (2012). https://doi.org/10.1007/s11242-012-0066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0066-1

Keywords

Navigation