Skip to main content
Log in

Quantitative In Situ Enhanced Oil Recovery Monitoring Using Nuclear Magnetic Resonance

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Quantitative in situ monitoring of oil recovery from sedimentary rock is demonstrated for the first time using advanced two-dimensional (2D) nuclear magnetic resonance (NMR) correlation measurements on a low field spectrometer. The laboratory-scale NMR system was chosen to provide a common physics of measurement with NMR well-logging tools. The NMR protocols are used to monitor recovery of a heavy Middle East crude oil from high permeability sandstone plugs using a brine (water) flood followed by chemical enhanced oil recovery agents: polymer and alkaline–surfactant–polymer solutions. 2D correlations between relaxation time (T 1, T 2) and apparent self-diffusion coefficient D app are used to obtain simultaneously a volumetric determination of the oil and aqueous fluid-phase saturations present in the porous material. The T 1T 2 and D appT 2 correlations are bulk measurements of the entire rock core-plug; excellent agreement is shown between the measures of remaining oil (from NMR) and recovered oil (from gravimetric assay of the effluent). Furthermore, we introduce the capability to measure spatially resolved T 2 distributions on a low field spectrometer using a rapid frequency-encoded yT 2 map. A non-uniform distribution of remaining oil is observed due to viscous instabilities in the flowing liquids; the final oil saturation ranges from \({S_{\rm o}^{\rm{(final)}} \approx 0}\) to 20 % along the direction of flow. These results highlight the quantitative nature of the NMR data obtainable in low field NMR core analysis and also the importance of spatially resolved measurements when studying short core-plugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora, S., Horstmann, D., Cherukupalli, P., Edwards, J., Ramamoorthy, R., McDonald, T., Bradley, D., Ayan, C., Zaggas, J., Cig, K.: Single-Well In-Situ Measurement of Residual Oil Saturation After an EOR Chemical Flood. SPE 129069 (2010)

  • Baldwin B.A., Spinler E.A.: A direct method for simultaneously determining positive and negative capillary pressure curves in reservoir rock. J. Pet. Sci. Eng. 20, 161–165 (1998)

    Article  Google Scholar 

  • Baldwin B.A., Yamanashi W.S.: Detecting fluid movement and isolation in reservoir core with medical NMR imaging techniques. SPE Reserv. Eng. 4, 207–212 (1989)

    Google Scholar 

  • Baldwin B.A., Yamanashi W.S.: Capillary-pressure determinations from NMR images of centrifuged core plugs: Berea sandstone. Log Anal. 32, 550–556 (1991a)

    Google Scholar 

  • Baldwin B.A., Yamanashi W.S.: NMR imaging of fluid saturation distributions in cores. Log Anal. 32, 536–549 (1991b)

    Google Scholar 

  • Blackband S., Mansfield P., Barnes J.R., Clague A.D.H., Rice S.A.: Discrimination of crude oil and water in sand and in bore cores with NMR imaging. SPE Form. Eval. 1, 31–34 (1986)

    Google Scholar 

  • Borgia G.C., Brancolini A., Camanzi A., Maddinelli G.: Capillary water determination in core plugs: A combined study based on imaging techniques and relaxation analysis. Magn. Reson. Imaging 12, 221–224 (1994)

    Article  Google Scholar 

  • Borgia, G.C., Bortolotti, V., Fantazzini, P.: Magnetic resonance relaxation-tomography to assess fractures induced in vugular carbonate cores. SPE 56787. In: ATC, Houston, Texas, 3–6 October 1999

  • Bortolotti, V., Macini, P., Mesini, E., Srisuriyachai, F., Fantazzini, P., Gombia, M.: Combined spatially resolved and non-resolved 1H-NMR relaxation analysis to assess and monitor wettability reversal in carbonate rocks. IPTC 13443. In: IPTC, Doha, Qatar, 7–9 December 2009

  • Bouwmeester, R., Faber, R.: Shell Global Solutions International BV. Private communication (2012)

  • Brautaset, A., Ersland, G., Graue, A., Stevens, J., Howard, J.: Using MRI to Study In Situ Oil Recovery During CO2 Injection in Carbonates. SCA 2008-41 (2008)

  • Brown, L.D.: NMR Imaging: Principles and Recent Progress. SCA88-12 (1988)

  • Butler J.P., Reeds J.A., Dawson S.V.: Estimating solutions of 1st kind integral-equations with nonnegative constraints and optimal smoothing. SIAM J Num. Anal. 18(3), 381–397 (1981)

    Article  Google Scholar 

  • Callaghan P.: Principles of Nuclear Magnetic Resonance Microscopy. Clarendon, Oxford (1991)

    Google Scholar 

  • Carr H., Purcell E.: Effects of diffusion on free precession in NMR experiments. Phys. Rev. 94, 630–638 (1954)

    Article  Google Scholar 

  • Chardaire-Rivière, C., Roussel, J.C.: Use of a High Magnetic Field to Visualize Fluids in Porous Media by MRI. SCA91-12 (1991)

  • Chen Q., Balcom B.J.: Measurement of rock-core capillary pressure curves using a single-speed centrifuge and one-dimensional magnetic-resonance imaging. J. Chem. Phys. 122, 214–720 (2005)

    Google Scholar 

  • Chen Q., Gingras M.K., Balcom B.J.: A magnetic resonance study of pore filling processes during spontaneous imbibition in Berea sandstone. J. Chem. Phys. 119, 9609–9616 (2003)

    Article  Google Scholar 

  • Cotts R.M., Hoch M.J.R., Sun T., Markert J.T.: Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J. Magn. Reson. 83, 252–266 (1989)

    Google Scholar 

  • Davies S., Packer K.J.: Pore-size distributions from nuclear magnetic resonance spin-lattice relaxation measurements of fluid-saturated porous solids. I. Theory and simulation. J. Appl. Phys. 67(6), 3163–3170 (1990a)

    Article  Google Scholar 

  • Davies S., Packer K.J.: Pore-size distributions from nuclear magnetic resonance spin-lattice relaxation measurements of fluid-saturated porous solids. II. Applications to reservoir core samples. J. Appl. Phys. 67(6), 3171–3176 (1990b)

    Article  Google Scholar 

  • Doughty D.A., Maerefat N.L.: Preliminary transformation of an NMR spectrometer into an NMR imager for evaluating fluid content and rock properties of core samples. Log Anal. 30, 78–84 (1989)

    Google Scholar 

  • Doughty D.A., Tomutsa L.: Multinuclear NMR microscopy of two-phase fluid systems in porous rock. Magn. Reson. Imaging 14, 869–873 (1996)

    Article  Google Scholar 

  • Edelstein, W.A., Vinegar, H.J., Tutunjian, P.N., Roemer, P.B., Mueller, O.M.: NMR imaging for core analysis, pp. 101–112. SPE 18272. In: 63rd ATC, Houston, Texas, 2–5 October 1988

  • Enwere, M.P., Archer, J.S.: NMR imaging for water/oil displacement in cores under viscous-capillary force control. SPE/DOE 24166, pp. 99–104. In: SPE/DOE 8th Symposium on EOR, Tulsa, Oklahomo, 22–24 April 1992

  • Fernø, M.A., Ersland, G., Haugen, Å, Graue, A., Stevens, J., Howard, J.J.: Visualizing Fluid Flow with MRI in Oil-Wet Fractured Carbonate Rock. SCA2007-12 (2007)

  • Fordham E.J., Horsfield M.A., Hall L.D., Maitland G.C.: Depth filtration of clay in rock cores observed by one-dimensional 1H NMR imaging. J. Colloid Interface Sci. 156, 253–255 (1993)

    Article  Google Scholar 

  • Fordham E.J., Sezginer A., Hall L.D.: Imaging multiexponential relaxation in the (y, log_e T 1) plane, with application to clay filtration in rock cores. J. Magn. Reson. A 113, 139–150 (1995)

    Article  Google Scholar 

  • Gladden L.F., Mitchell J.: Measuring adsorption, diffusion and flow in chemical engineering: applications of magnetic resonance to porous media. New J. Phys. 13, 035,001 (2011)

    Article  Google Scholar 

  • Gleeson J.W., Woessner D.E., Jordan C.F. Jr.: NMR imaging of pore structures in limestones. SPE Form. Eval. 8, 123–127 (1993)

    Google Scholar 

  • Green, D.P., Dick, J.R., McAloon, M., Cano-Barrita, P.F.d.J., Burger, J., Balcom, B.: Oil/Water Imbibition and Drainage Capillary Pressure Determined by MRI on a Wide Sampling of Rocks. SCA2008-01 (2008)

  • Haacke E.M., Brown R.W., Thompson M.R., Venkatesan R.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, New York (1999)

    Google Scholar 

  • Hahn E.L.: Spin echoes. Phys. Rev. 80(4), 580–594 (1950)

    Article  Google Scholar 

  • Heaton, N.J.: Multi-Measurement NMR Analysis Based on Maximum Entropy. US patent 6,960,913 B2 (2005)

  • Hilfer R., Øren P.E.: Dimensional analysis of pore scale and field scale immiscible displacement. Transp. Porous Media 22, 53–72 (1996)

    Article  Google Scholar 

  • Howard J.J., Spinler E.A.: Nuclear magnetic resonance measurements of wettability and fluid saturations in chalk. SPE Adv. Tech. Ser. 3, 60–65 (1995)

    Google Scholar 

  • Hürlimann M.D.: Effective gradients in porous media due to susceptibility differences. J. Magn. Reson. 131, 232–240 (1998)

    Article  Google Scholar 

  • Hürlimann M.D., Griffin D.D.: Spin dynamics of Carr–Purcell–Meiboom–Gill-like sequences in grossly inhomogeneous B 0 and B 1 fields and application to NMR well logging. J. Magn. Reson. 143(1), 120–135 (2000)

    Article  Google Scholar 

  • Hürlimann M.D., Venkataramanan L.: Quantitative measurement of two-dimensional distribution functions of diffusion and relaxation in grossly inhomogeneous fields. J. Magn. Reson. 157, 31–42 (2002)

    Article  Google Scholar 

  • Hürlimann M.D., Venkataramanan L., Flaum C.: The diffusion-spin relaxation time distribution function as an experimental probe to characterize fluid mixtures in porous media. J. Chem. Phys. 117, 10223–10232 (2002)

    Article  Google Scholar 

  • Kenyon W.E.: Petrophysical principles of applications of NMR logging. Log Anal. 38, 21–43 (1997)

    Google Scholar 

  • Li L., Han H., Balcom B.J.: Spin echo SPI methods for quantitative analysis of fluids in porous media. J. Magn. Reson. 198, 252–260 (2009)

    Article  Google Scholar 

  • Mahmoud S., Doughty D.A., Tomutsa L., Honarpour M.M.: Pore Level Fluid Imaging Using High Resolution Nuclear Magnetic Resonance Imaging and Thin Slab Micromodels. SCA90-24 (1990)

  • Marle C.M.: Multiphase Flow in Porous Media. Editions Technip, Paris (1981)

    Google Scholar 

  • Mattiello, D., Balzarini, M., Ferraccioli, L., Brancolini, A.: Calculation of Constituent Porosity in a Dual-Porosity Matrix: MRI and Image Analysis Integration. SCA-9706 (1997)

  • McDonald P.J., Korb J.P., Mitchell J., Monteilhet L.: Surface relaxation and chemical exchange in hydrating cement pastes: a two-dimensional NMR relaxation study. Phys. Rev. E 72, 011409 (2005)

    Article  Google Scholar 

  • Meiboom S., Gill D.: Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 668–691 (1958)

    Article  Google Scholar 

  • Mitchell J., Fordham E.J.: Emulation of petroleum well-logging DT 2 correlations on a standard benchtop spectrometer. J. Magn. Reson. 212, 394–401 (2011)

    Article  Google Scholar 

  • Mitchell J., Blumler P., McDonald P.J.: Spatially resolved nuclear magnetic resonance studies of planar samples. Prog. Nucl. Magn. Reson. Spectrosc. 48(4), 161–181 (2006)

    Article  Google Scholar 

  • Mitchell J., Graf von der Schulenburg D.A., Holland D.J., Fordham E.J., Johns M.L., Gladden L.F.: Determining NMR flow propagator moments in porous rocks without the influence of relaxation. J. Magn. Reson. 193, 218–225 (2008a)

    Article  Google Scholar 

  • Mitchell J., Sederman A.J., Fordham E.J., Johns M.L., Gladden L.F.: A rapid measurement of flow propagators in porous rocks. J. Magn. Reson. 191, 267–272 (2008b)

    Article  Google Scholar 

  • Mitchell J., Hürlimann M.D., Fordham E.J.: A rapid measurement of T 1/T 2: the DECPMG sequence. J. Magn. Reson. 200, 198–206 (2009)

    Article  Google Scholar 

  • Mitchell J., Chandrasekera T.C., Johns M.L., Gladden L.F., Fordham E.J.: Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength. Phys. Rev. E 81, 26–101 (2010)

    Article  Google Scholar 

  • Mitchell J., Chandrasekera T.C., Gladden L.F.: Numerical estimation of relaxation and diffusion distributions in two dimensions. Prog. Nucl. Magn. Reson. Spectrosc. 62, 34–50 (2012)

    Article  Google Scholar 

  • Nørgaard, J.V., Olsen, D., Springer, N., Reffstrup, J.: Capillary pressure curves for low permeability chalk obtained by NMR imaging of core saturation profiles, pp. 807–816. SPE 30605. In: SPE Annual Technical Conference and Exhibition, Dallas, Texas, 22–25 October 1995

  • Petrov O.V., Ersland G., Balcom B.J.: T 2 distribution mapping profiles with phase-encode MRI. J. Magn. Reson. 209, 39–46 (2011)

    Article  Google Scholar 

  • Saraf D.N., Fatt I.: Three-phase relative permeability measurement using a nuclear magnetic resonance technique for estimating fluid saturation. SPE J. 1760, 235–242 (1967)

    Google Scholar 

  • Singer P.M., Leu G., Fordham E.J., Sen P.N.: Low magnetic fields for flow propagators in permeable rocks. J. Magn. Reson. 183, 167–177 (2006)

    Article  Google Scholar 

  • Song Y.Q., Venkataramanan L., Hürlimann M.D., Flaum M., Frulla P., Straley C.: T 1T 2 correlation spectra obtained using a fast two-dimensional Laplace inversion. J. Magn. Reson. 154(2), 261–268 (2002)

    Article  Google Scholar 

  • Song K.M., Mitchell J., Jaffel H., Gladden L.F.: Simultaneous monitoring of hydration kinetics, microstructural evolution, and surface interactions in hydrating gypsum plaster in the presence of additives. J. Mater. Sci 45, 5282–5290 (2010)

    Article  Google Scholar 

  • Stejskal E.D., Tanner J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965)

    Article  Google Scholar 

  • van Duijn C.J., Molenaar J., de Neef M.J.: The effect of capillary forces on immiscible two-phase flow in heterogeneous porous media. Transp. Porous Media 21, 71–93 (1995)

    Article  Google Scholar 

  • van Duijn C.J., Mikelić A., Pop I.S.: Effective equations for two-phase flow with trapping on the micro scale. SIAM J. Appl. Math. 62, 1531–1563 (2002)

    Article  Google Scholar 

  • Venkataramanan L., Song Y.Q., Hürlimann M.D.: Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions. IEEE Trans. Signal Process. 50, 1017–1026 (2002)

    Article  Google Scholar 

  • Wahba G.: Practical approximate solutions to linear operator equations when data are noisy. SIAM J. Numer. Anal. 14, 651–667 (1977)

    Article  Google Scholar 

  • Washburn K.E., Eccles C.D., Callaghan P.T.: The dependence on magnetic field strength of correlated internal gradient relaxation time distributions in heterogeneous materials. J. Magn. Reson. 194, 33–40 (2008)

    Article  Google Scholar 

  • Watson A.T., Chang C.T.P.: Characterizing porous media with NMR methods. Prog. Nucl. Magn. Reson. Spectrosc. 31, 343–386 (1997)

    Article  Google Scholar 

  • Wilson J.D.: Statistical approach to the solution of 1st kind integral-equations arising in the study of materials and their properties. J. Mater. Sci. 27(14), 3911–3924 (1992)

    Article  Google Scholar 

  • Yortsos Y.C., Chang J.: Capillary effects in steady-state flow in heterogeneous cores. Transp. Porous Media 5, 399–420 (1990)

    Article  Google Scholar 

  • Yortsos Y.C., Xu B., Salin D.: Delineation of microscale regimes of fully-developed drainage and implications for continuum models. Comp. Geosci. 5, 257–278 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, J., Staniland, J., Chassagne, R. et al. Quantitative In Situ Enhanced Oil Recovery Monitoring Using Nuclear Magnetic Resonance. Transp Porous Med 94, 683–706 (2012). https://doi.org/10.1007/s11242-012-0019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0019-8

Keywords

Navigation