Skip to main content

Advertisement

Log in

Thermal Stratification Effects on Hiemenz Flow of Nanofluid Over a Porous Wedge Sheet in the Presence of Suction/Injection Due to Solar Energy: Lie Group Transformation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The objective of the present work is to investigate theoretically the Hiemenz flow and heat transfer of an incompressible viscous nanofluid past a porous wedge sheet in the presence of thermal stratification due to solar energy (incident radiation). The wall of the wedge is embedded in a uniform Darcian porous medium to allow for possible fluid wall suction or injection and has a power–law variation of the wall temperature. The partial differential equations governing the problem under consideration are transformed by a special form of Lie symmetry group transformations viz., one-parameter group of transformation into a system of ordinary differential equations which are solved numerically by Runge–Kutta–Gill-based shooting method. The conclusion is drawn that the flow field and temperature are significantly influenced by convective radiation, thermal stratification, buoyancy force, and porosity of the sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman G.M.: Thermal-diffusion and MHD for Soret and Dufour’s effects on Hiemenz flow and mass transfer of fluid flow through porous medium onto a stretching surface. Phys. B 405, 2560–2569 (2010)

    Article  Google Scholar 

  • Aminossadati S.M., Ghasemi B.: Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure. Eur. J. Mech. B. Fluids 28, 630–640 (2009)

    Article  Google Scholar 

  • Anjali Devi S.P., Kandasamy R.: Effects of heat and mass transfer on MHD laminar boundary layer flow over a wedge with suction or injection. J. Energy Heat Mass Transf. 23, 167–178 (2001)

    Google Scholar 

  • Avramenko A.A., Kobzar S.G., Shevchuk I.V., Kuznetsov A.V., Iwanisov L.T.: Symmetry of turbulent boundary layer flows: investigation of different Eddy viscosity models. Acta Mech. 151, 1–14 (2001)

    Article  Google Scholar 

  • Chamkha A.J., Khaled A.-R.A.: Similarity for hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media. Int. J. Numer. Methods Heat Fluid Flow 10, 94–115 (2000)

    Article  Google Scholar 

  • Chamkha A.J., Khaled A.-R.A.: Similarity solutions for hydro magnetic simultaneous heat and mass transfer. Heat Mass Transf. 37, 117–125 (2001)

    Article  Google Scholar 

  • Bluman G.W., Kumei S.: Symmetries and Differential Equations. Springer, New York (1989)

    Google Scholar 

  • Birkoff G.: Mathematics for engineers. J. Electr. Eng. 67, 1185 (1948)

    Google Scholar 

  • Birkoff G.: Hydrodynamics. Princeton University Press, New Jersey (1960)

    Google Scholar 

  • Brewster M.Q.: Thermal Radiative Transfer Properties. Wiley, New York (1972)

    Google Scholar 

  • Buongiorno J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  • Buongiorno J., Hu W.: Nanofluid coolants for advanced nuclear power plants. In: Proceedings of ICAPP ’05, Seoul, 15–19, Paper no. 5705 (2005)

  • Cheng W.T., Lin H.T.: Non-similarity solution and correlation of transient heat transfer in laminar boundary layer flow over a wedge. Int. J. Eng. Sci. 40, 531–540 (2002)

    Article  Google Scholar 

  • Cheng P., Minkowycz W.: Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J. Geophys. Res. 82, 2040–2044 (1977)

    Article  Google Scholar 

  • Choi, S.: Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows. ASME MD, vol. 231 and FED, vol. 66, pp. 99–105 (1995)

  • Fathalah K.A., Elsayed M.M.: Natural convection due to solar radiation over a non absorbing plate with and without heat losses. Int. J. Heat Fluid Flow 2, 41–45 (1980)

    Article  Google Scholar 

  • Gill S.: A process for the step-by-step integration of differential equations in an automatic digital computing machine. Proc. Cambr. Philos. Soc. 47, 96–108 (1951)

    Article  Google Scholar 

  • Hakiem M.A.E.L., Mohammadeian A.A., Kaheir S.M.M.E.L., Gorla R.S.R.: Joule heating effects on MHD free convection flow of a micro polar fluid. Int. Comms. Heat Mass Transf. 26, 219–226 (1999)

    Article  Google Scholar 

  • Hiemenz K.: Die Grenzschicht an einem in den gleichfoÈrmigen FluÈssigkeitsstrom eingetauchten geraden Kreiszylinder. Dingl. Poltechnol. J. 326, 321–410 (1911)

    Google Scholar 

  • Hossian M.A.: Viscous and Joule heating effects on MHD free convection flow with variable plate temperature. Int. J. Heat Mass Transf. 35, 3485–3492 (1992)

    Article  Google Scholar 

  • Hunt, A.J.: Small particle heat exchangers. Lawrence Berkeley Laboratory Report No. LBL-7841. J. Renew. Sustain. Energy (1978)

  • Ibragimov N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, New York (1999)

    Google Scholar 

  • Kafoussias N.G., Nanousis N.D.: Magnetohydrodynamic laminar boundary layer flow over a wedge with suction or injection. Can. J. Phys. 75, 733 (1997a)

    Article  Google Scholar 

  • Kafoussias N.G., Nanousis N.D.: Magnetohydrodynamic laminar boundary layer flow over a wedge with suction or injection. Can. J. Phys. 75, 733–781 (1997b)

    Article  Google Scholar 

  • Kandasamy R., Loganathan P., Puvi Arasu P.: Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection. Nucl. Eng. Des. 241, 2053–2059 (2011)

    Article  Google Scholar 

  • Kuo B.-L.: Heat transfer analysis for the Falkner-Skan wedge flow by the differential transformation method. Int. J. Heat Mass Transf. 48, 5036–5042 (2005)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  • Lai F.C., Kulacki F.A.: The influence of lateral mass flux on mixed convection over inclined surface in saturated porous media. ASME J. Heat Transf. 21, 515–518 (1990)

    Article  Google Scholar 

  • Maxwell J.C.: A Treatise on Electricity and Magnetism: Unabridged, vol. 2, 3rd edn. Clarendon Press, Oxford (1891)

    Google Scholar 

  • Nakayama A., Koyama H.: Hitoshi Similarity solutions for buoyancy induced flows over a non-isothermal curved surface in a thermally stratified porous medium. Appl. Sci. Res. 46, 309–314 (1989)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5792–5795 (2009)

    Article  Google Scholar 

  • Ovsiannikov L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    Google Scholar 

  • Oztop H.F., Abu-Nada E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)

    Article  Google Scholar 

  • Rana R., Bhargava R.: Numerical study of heat transfer enhancement in mixed convection flow along a vertical plate with heat source/sink utilizing nanofluids. Commun. Nonlinear Sci. Numer. Simul. 16, 4318–4334 (2011)

    Article  Google Scholar 

  • Raptis A.: Radiation and free convection flow through a porous medium. Int. Commun. Heat Mass Transf. 25, 289–295 (1998)

    Article  Google Scholar 

  • Rosmila A.-K., Kandasamy K., Muhaimin I.: Scaling group transformation for boundary-layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemical reaction with heat radiation. Comput. Fluids 52, 15–21 (2011)

    Article  Google Scholar 

  • Schlichting, H.: Boundary Layer Theory, vol. 9, pp. 164–165. McGraw Hill Inc, New York (1979)

  • Seddeek M.A., Darwish A.A., Abdelmeguid M.S.: Effects of chemical reaction and variable viscosity on hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media with radiation. Commun. Nonlinear Sci. Numer. Simul. 12, 195–213 (2007)

    Article  Google Scholar 

  • Sharma A., Tyagi V.V., Chen C.R., Buddhi D.: Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009)

    Article  Google Scholar 

  • Sparrow, E.M., Cess, R.D.: Radiation Heat Transfer. Hemisphere, Washington (1978)

  • Tien C.L., Hong J.T. et al.: Natural convection in porous media under non-Darcian and non-uniform permeability conditions. In: Kakac, S. (eds) Natural Convection, Hemisphere, Washington (1985)

    Google Scholar 

  • Tsai R., Huang J.S.: Heat and mass transfer for Soret and Dufour’s effects on Hiemenz flow through porous medium onto a stretching surface. Int. J. Heat Mass Transf. 52, 2399–2406 (2009)

    Article  Google Scholar 

  • Vafai K., Alkire R.L., Tien C.L.: An experimental investigation of heat transfer in variable porosity media. ASME J. Heat Transf. 107, 642–647 (1985)

    Article  Google Scholar 

  • Vajravelu K., Prasad K.V., Jinho L., Changhoon L., Pop I., Van Gorder R.A.: Convective heat transfer in the flow of viscous Ag-water and cu-water nanofluids over a stretching surface. Int. J. Therm. Sci. 50, 843–851 (2011)

    Article  Google Scholar 

  • Watanabe T.: Thermal boundary layer over a wedge with uniform suction or injection in forced flow. Acta Mech. 83, 119–126 (1990)

    Article  Google Scholar 

  • Yih K.A.: The effect of uniform suction/blowing on heat transfer of Magnetohydrodynamic Hiemenz flow through porous media. Acta Mech. 130, 147–158 (1998)

    Article  Google Scholar 

  • Yurusoy M., Pakdemirli M.: Symmetry reductions of unsteady three-dimensional boundary layers of some non-Newtonian Fluids. Int. J. Eng. Sci. 35, 731–740 (1997)

    Article  Google Scholar 

  • Yurusoy M., Pakdemirli M.: Exact solutions of boundary layer equations of a special non-Newtonian fluid over a stretching sheet. Mech. Res. Commun. 26, 171–175 (1999a)

    Article  Google Scholar 

  • Yurusoy M., Pakdemirli M.: Group classification of a non-Newtonian fluid model using classical approach and equivalence transformations. Int. J. Non-Linear Mech. 34, 341–346 (1999b)

    Article  Google Scholar 

  • Yurusoy M., Pakdemirli M., Noyan O.F.: Lie group analysis of creeping flow of a second grade fluid. Int. J. Non-Linear Mech. 36, 955–960 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kandasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandasamy, R., Muhaimin, I., Ram, N.S. et al. Thermal Stratification Effects on Hiemenz Flow of Nanofluid Over a Porous Wedge Sheet in the Presence of Suction/Injection Due to Solar Energy: Lie Group Transformation. Transp Porous Med 94, 399–416 (2012). https://doi.org/10.1007/s11242-012-0011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0011-3

Keywords

Navigation