Skip to main content
Log in

Immiscible Displacement of a Wetting Fluid by a Non-wetting One at High Capillary Number in a Micro-model Containing a Single Fracture

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Most reservoirs in Iran are heterogeneous fractured carbonate reservoirs. Heterogeneity causes an earlier breakthrough and an unstable front which leads to a lower recovery. A series of experiments were conducted whereby the distilled water displaced n-Decane in strongly oil-wet glass micro-models containing a single fracture. Experimental data from image analysis of immiscible displacement processes are used to modify the Buckley–Leverett and fractional flow equations by a heterogeneity factor. It is shown that the heterogeneity factor in the modified equations can be expressed as a function of fracture length and orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aziz K., Settari A.: Petroleum Reservoir Simulation, pp. 5–241. Applied Science Publishers Ltd, London (1979)

    Google Scholar 

  • Bahralolom I.M., Bretz R.E., Orr JR. F.M.: Experimental investigation of the interaction of phase behavior with microscopic heterogeneity in a CO2 Flood. SPE Reserv. Eng. 3(2), 662–672 (1988)

    Google Scholar 

  • Bai B., Liu Y., Coste J., Li L.: Preformed particle gel for conformance control: transport mechanism through porous media. SPE Reserv. Eval. Eng. 10(2), 176–184 (2007)

    Google Scholar 

  • Bear J.: Dynamics of fluids in porous media, pp. 439–573. American Elsevier Publishing Company, New York (1972)

    Google Scholar 

  • Binning P., Celia M.A.: Practical implementation of the fractional flow approach to multi-phase flow simulation. Adv. Water Resour. 22(5), 461–478 (1999)

    Article  Google Scholar 

  • Bora, R., Chakma, A., Maini, B.B.: Experimental investigation of foamy oil flow using a high pressure etched glass micromodel. In: SPE Annual Technical Conference and Exhibition, Denver, pp. 91–100 (2003)

  • Branets L.V., Ghai S.S., Lyons S.L., Wu X.H.: Challenges and technologies in reservoir modeling. Commun. Comput. Phys. 6(1), 1–23 (2009)

    Article  Google Scholar 

  • Buckley S.E., Leverett M.C.: Mechanism of fluid displacement in sands. Pet. Trans. AIME 146, 107–116 (1942)

    Google Scholar 

  • Campbell B.T., Orr F.M. Jr: Flow visualization for CO2/crude oil displacements. SPEJ 25(5), 665–678 (1985)

    Article  Google Scholar 

  • Chatzis I., Dullien F.A.L.: Dynamic immiscible displacement mechanisms in pore doublets: theory versus experiment. J. Colloid Interf. Sci. 91(1), 199–222 (1983)

    Article  Google Scholar 

  • Chen Z., Espedal M., Ewing R.E.: Continuous-time finite element analysis of multiphase flow in groundwater hydrology. Appl. Math. 40(3), 203–226 (1995)

    Google Scholar 

  • Christov I., Popov B.: New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. J. Comput. Phys. 227(11), 5736–5757 (2008)

    Article  Google Scholar 

  • Danesh A., Krinis D., Henderson G.D., Peden J.M.: Asphaltene deposition in miscible gas flooding of oil reservoirs. Chem. Eng. Res. Des. 66, 339–344 (1988)

    Google Scholar 

  • Danesh A., Krinis D., Henderson G.D., Peden J.M.: Pore level visual investigation of miscible and immiscible displacements. J. Pet. Sci. Eng. 2(2–3), 167–177 (1989)

    Article  Google Scholar 

  • Danesh, A., Peden, J.M., Krinis, D., Henderson, G.D.: Pore level visual investigation of oil recovery by solution gas drive and gas injection. In: SPE 16956, 62nd Annual Technical Conference and Exhibition of SPE, Dallas (1987)

  • Djilali , Djilali : Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities. Energy 32(4), 269–280 (2007)

    Article  Google Scholar 

  • Djilali N., Sui P.C.: Transport phenomena in fuel cells: from microscale to macroscale. Int. J. Comput. Fluid Dyn. 22(1–2), 115–133 (2008)

    Article  Google Scholar 

  • Durlofsky L.J., Efendiev Y., Ginting V.: An adaptive local-global multiscale finite volume element method for two-phase flow simulations. Adv. Water Resour. 30(3), 576–588 (2007)

    Article  Google Scholar 

  • Efendiev Y., Ginting V., Hou T., Ewing R.: Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys. 220(1), 155–174 (2006)

    Article  Google Scholar 

  • Efendiev Y., Hou T.: Multiscale finite element methods for porous media flows and their applications. Appl. Numer. Math. 57(5–7), 577–596 (2007)

    Article  Google Scholar 

  • George D.S., Hayat O., Kovscek A.R.: A microvisual study of solution gas-drive mechanisms in viscous oils. J. Pet. Sci. Eng. 46(1–2), 101–119 (2005)

    Article  Google Scholar 

  • Gerritsen M.G., Durlofsky L.J.: Modeling fluid flow in oil reservoirs. Annu. Rev. Fluid Mech. 37(1), 211–238 (2005)

    Article  Google Scholar 

  • Ghazanfari, M.H., Khodabakhsh, M., Kharrat, R., Rashtchian, D.: Unsteady state relative permeability and capillary pressure estimation of porous media. In: CMWR—XVI International Conference, Copenhagen (2006)

  • Ghazanfari M.H., Rashtchian D., Kharrat R., Voussughi S.: Capillary pressure estimation of porous media using statistical pore size function. Chem. Eng. Technol. 30(7), 862–869 (2007)

    Article  Google Scholar 

  • Grattoni C.A., Dawe R.A.: Gas and oil production from water flood residual oil: effects of wettability and oil spreading characteristics. J. Pet. Sci. Eng. 39(3–4), 297–308 (2003)

    Article  Google Scholar 

  • Green, D.W., Wilhite, G.P.: Enhanced oil recovery. Society of Petroleum Engineers, Texas. ISBN: 1-55563-077-4 (1998)

  • Hatiboglu C.U., Babadagli T.: Pore-scale studies of spontaneous imbibition into oil-saturated porous media. Phys. Rev. E 77(6), 066311 (2008)

    Article  Google Scholar 

  • Helmig R., Niessner J., Class H.: Recent advances in finite element methods for multi-phase flow processes in porous media. Int. J. Comput. Fluid Dyn. 20(3&4), 245–252 (2006)

    Article  Google Scholar 

  • Hornof V., Morrow N.R.: Flow visualization of the effects of interfacial tension on displacement. SPE Reserv. Eng. 3(1), 251–256 (1988)

    Google Scholar 

  • Hou T.Y., Wu X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)

    Article  Google Scholar 

  • Jenny P., Lee S.H., Tchelepi H.A.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187(1), 47–67 (2003)

    Article  Google Scholar 

  • Kamari, E., Shadizadeh, S.R., Rashtchian, D.: Effect of fracture geometrics on breakthrough time in immiscible displacement process through strongly oil wet fractured porous media: experimental investigation. Energy Sour. A: Recovery, Util. Environ. Eff. 34(10), 867–876. doi:10.1080/15567036.2010.521802

  • Kumbur E.C., Sharp K.V., Mench M.M.: Validated Leverett approach for multiphase flow in PEFC diffusion media. J. Electrochem. Soc. 154(12), B1295–B1304 (2007a)

    Article  Google Scholar 

  • Kumbur E.C., Sharp K.V., Mench M.M.: Validated Leverett approach for multiphase flow in PEFC diffusion media. J. Electrochem. Soc. 154(12), B1305–B1314 (2007b)

    Article  Google Scholar 

  • Kumbur E.C., Sharp K.V., Mench M.M.: Validated Leverett approach for multiphase flow in PEFC diffusion media. J. Electrochem. Soc. 154(12), B1315–B1324 (2007c)

    Article  Google Scholar 

  • Lago M., Huerta M., Gomes R.: Visualization study during depletion experiments of venezuelan heavy oils using glass micromodels. J. Can. Pet. Technol. 41(1), 41–47 (2002)

    Google Scholar 

  • Laroche C., Vizika O., Kalaydjian F.: Wettability heterogeneities in gas injection; experiments and modeling. Pet. Geosci. 5(1), 65–69 (1999)

    Article  Google Scholar 

  • Lenormand R, Touboul , Zarcone C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988)

    Article  Google Scholar 

  • Lister S., Djilali N.: Two-phase transport in porous gas diffusion electrodes. In: Sundén, B., Faghri, M. (eds) Transport Phenomena in Fuel Cells, pp. 175–213. WIT Press, Southampton (2005)

    Chapter  Google Scholar 

  • Mackay E.J., Henderson G.D., Tehrani D.H., Danesh A.: The importance of interfacial tension on fluid distribution during depressurization. SPE Reserv. Eval. Eng. 1(5), 408–415 (1998)

    Google Scholar 

  • Mahers, E.G., Dawe, R.A.: The role of diffusion and mass transfer phenomena in the mobilization of oil during miscible displacement. European Symposium on Enhanced Oil Recovery, Paris, pp. 279–288 (1982)

  • Mahers, E.G., Dawe, R.A.: Quantification of diffusion inside porous media for EOR processes by micromodel and holography. In: SPE 12679 presented at the SPE/DOE Fourth Symposium on Enhanced Oil Recovery, Tulsa (1984)

  • McKeller M., Wardlaw N.C.: A method of making two-dimensional glass micromodels of pore systems. J. Can. Pet. Technol. 21(4), 39–41 (1982)

    Google Scholar 

  • Morel-Seytoux H.J., Billica J.A.: A two-phase numerical model for prediction of infiltration: applications to a semiinfinite column. Water Resour. Res. 21(4), 607–615 (1985a)

    Article  Google Scholar 

  • Morel-Seytoux H.J., Billica J.A.: A two-phase numerical model for prediction of infiltration: case of an impervious bottom. Water Resour. Res. 21(9), 1389–1396 (1985b)

    Article  Google Scholar 

  • Morrow N.R., Lim H.T., Ward J.S.: Effect of Crude-oil-induced wettability changes on oil recovery. SPE Form. Eval. 1(1), 89–103 (1986)

    Google Scholar 

  • Niasar V.J., Hassanzadeh S.M., Pyrak-Nolte L.J., Berentsen C.: Simulating drainage and imbibition experiments in a high-porosity micromodel using an unstructured pore network model. Water Resour. Res. 45(1), W02430 (2009)

    Article  Google Scholar 

  • Nield D.A., Bejan A.: Convection in Porous Media, pp. 39–55. Springer, New York (2006)

    Google Scholar 

  • Niessner J., Helmig R., Jakobs H., Roberts J.E.: Interface condition and linearization schemes in the Newton iterations for two-phase flow in heterogeneous porous media. Adv. Water Resour. 28(7), 671–687 (2005)

    Article  Google Scholar 

  • Niessner J., Helmig R.: Multi-scale modeling of three-phase–three-component processes in heterogeneous porous media. Adv. Water Resour. 30(11), 2309–2325 (2007)

    Article  Google Scholar 

  • Paterson L., Hornof V., Neale G.: Visualization of a surfactant flood of an oil saturated porous medium. SPEJ 24(3), 325–327 (1984)

    Article  Google Scholar 

  • Peaceman D.W.: Fundamentals of numerical reservoir simulation, pp. 1–33. Elsevier Scientific Publishing Company, Amsterdam (1977)

    Google Scholar 

  • Piri M., Blunt M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Phys. Rev. E 71(2), 026301 (2005)

    Article  Google Scholar 

  • Romero-Zeron, L., Kantzas, A.: The effect of wettability and pore geometry on foamed-gel-blockage performance. SPE Reserv. Eval. Eng. 10(2), 150–163 (2007)

    Google Scholar 

  • Ren W., Bentsen R.G., Cunha L.B.: A study of the gravity assisted tertiary gas injection processes. J. Can. Pet. Technol. 44(2), 26–32 (2005)

    Google Scholar 

  • Ren, X., Wu, P., Qu, Z., Shi, C.: Studying the scaling mechanism of low-permeability reservoirs using visual real-sand micromodel. In: SPE International Oilfield Scale Symposium, Aberdeen (2006)

  • Sander G.C., Norbury J., Weeks S.W.: An exact solution to the nonlinear diffusion–convection equation for two-phase flow. Q. J. Mech. Appl. Math. 46(4), 709–727 (1993)

    Article  Google Scholar 

  • Sohrabi, M., Tehrani, D.H., Danesh, A., Henderson, G.D.: Visualization of oil recovery by water alternating gas (WAG) injection using high pressure micromodels—oil-wet & mixed-wet systems. In: SPE 71494, Louisiana (2001)

  • Sohrabi M., Tehrani D.H., Danesh A., Henderson G.D.: Visualization of oil recovery by water-alternating-gas injection using high-pressure micromodels. SPEJ 9(3), 290–301 (2004)

    Article  Google Scholar 

  • Sohrabi M., Danesh A., Tehrani D.H., Jamiolahmady M.: Microscopic mechanisms of oil recovery by near-miscible gas injection. Transp. Porous Media 72(3), 351–367 (2007)

    Article  Google Scholar 

  • Soudmand-asli A., Ayatollahi S.S., Mohabatkar H., Zareie M., Shariatpanahi S.F.: The in situ microbial enhanced oil recovery in fractured porous media. J. Pet. Sci. Eng. 58(1–2), 161–172 (2007)

    Article  Google Scholar 

  • Tseng P.H., Zyvoloski G.A.: A reduced degree of freedom method for simulating non-isothermal multi-phase flow in a porous medium. Adv. Water Resour. 23(7), 731–745 (2000)

    Article  Google Scholar 

  • Wang, J., Dong, M., Asghari, K.: Effect of oil viscosity on heavy-oil/water relative permeability curves. In: SPE/DOE Symposium on Improved Oil Recovery, Tulsa (2006)

  • Wangen M.: Vertical migration of hydrocarbons modeled with fractional flow theory. Geophys. J. Int. 115(1), 109–131 (1993)

    Article  Google Scholar 

  • Wardlaw, N.C.: The effects of pore structure on displacement efficiency in reservoir rocks and in glass micromodels. In: SPE 8843, presented at the 1st Joint SPE/DOE Symposium on Enhanced Oil Recovery, Tulsa (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Rashtchian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamari, E., Rashtchian, D. & Shadizadeh, S.R. Immiscible Displacement of a Wetting Fluid by a Non-wetting One at High Capillary Number in a Micro-model Containing a Single Fracture. Transp Porous Med 94, 289–301 (2012). https://doi.org/10.1007/s11242-012-0005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0005-1

Keywords

Navigation