Skip to main content
Log in

Impact of Rock Heterogeneity on Interactions of Microbial-Enhanced Oil Recovery Processes

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Residual oil saturation reduction and microbial plugging are two crucial factors in microbial-enhanced oil recovery (MEOR) processes. In our previous study, the residual saturation was defined as a nonlinear function of the trapping number, and an explicit relation between the residual oil saturation and the trapping number was incorporated into a fully coupled biological (B) and hydrological (H) finite element model. In this study, the BH model is extended to consider the impact of rock heterogeneity on microbial-enhanced oil recovery phenomena. Numerical simulations of core flooding experiments are performed to demonstrate the influences of different parameters controlling the onset of oil mobilization. X-ray CT core scans are used to construct numerical porosity-permeability distributions for input to the simulations. Results show clear fine-scale fingering processing, and that trapping phenomena have significant effects on residual oil saturation and oil recovery in heterogeneous porous media. Water contents and bacterial distributions for heterogeneous porous media are compared with those for homogenous porous media. The evolution of the trapping number distribution is directly simulated and visualized. It is shown that the oil recovery efficiency of EOR/MEOR will be lower in heterogeneous media than in homogeneous media, largely due to the difficulty in supplying surfactant to unswept low-permeability zones. However, MEOR also provides efficient plugging along high-permeability zones which acts to increase sweep efficiency in heterogeneous media. Thus, MEOR may potentially be more suited for highly heterogeneous media than conventional EOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area

aa ps :

Parameters

C bC nC p :

Concentrations of microbes, nutrients, and products

C b,iC n,i :

Injected concentrations of microbes and nutrients

\({C_{{\rm ps}},\,\overline{{C}}_{{\rm ps}},\,C_{{\rm ps},\min},\,C_{{\rm ps},\max}}\) :

Surfactant concentration, average, minimum, and maximum

\({C_{\rm s}^\ast}\) :

Critical concentration of nutrients

\({\vec{D}_{\rm b},\,\vec{D}_{\rm n},\,\vec{D}_{\rm p}}\) :

Diffusion-dispersion tensors of microbes, nutrients, and products

\({D_{\rm b}^{{\rm eff}},\,D_{{\rm n}}^{{\rm eff}},\,D_{{\rm p}}^{{\rm eff}}}\) :

Effective diffusion coefficients

d 1 :

Bacterial decay rate

E :

Expected value operator

f w :

Fractional flow coefficient

g :

Gravitational acceleration

g 1 :

Bacterial growth rate

h :

Distance

h c :

Capillary pressure head

K 0 :

Initial permeability in homogeneous porous media

K :

Instantaneous permeability

K r,l :

Relative permeability of phase l

K p/s :

Saturation constant for product on substrate

k 1k 2k 3 :

Reversible attachment, detachment, and irreversible attachment rates

m :

Parameter

m s :

Maintenance energy

N B :

Bond number

N Ca :

Capillary number

N T :

Trapping number

n :

Parameter

\({\vec{n}}\) :

Normal vector

p l :

Pressure of phase l

Q l :

Flow rate of phase l

q l :

Source/sink term of phase l

R bR nR p :

Reaction rate source-sink terms

R KK :

Permeability spatial autocorrelation function

S l :

Saturation of phase l

S or\(S_{{\rm or}}^{\min}\)\(S_{{\rm or}}^{\max}\) :

Residual oil saturation, minimum, and maximum

S wi :

Irreducible water saturation

\({S_{\rm w}^\ast}\) :

Normalized water phase saturation

s :

Exponent parameter

T 1T 2 :

Fitting parameters

t :

Time

t 0 :

Bacterial and nutrient injection time

Δt :

Time step

u w :

Darcy flux of water phase

V g = (0, 0, v g)T :

Settling velocity of bacteria

Y p/b :

Bio-product yield coefficient per unit bacteria

Y p/s :

Bio-product yield coefficient per unit nutrient + substrate

Y s :

Maintenance energy coefficient

α 0 :

Angle of flow relative to horizontal

α b,Lα b,Tα n,Lα n,Tα p,Lα p,T :

Longitudinal and transverse dispersivities

a ps :

Ratio of bio-surfactant to metabolic products

α CTβ CTγ CT :

Parameters

θ :

Contact angle between aqueous/non-aqueous interface and porous medium

\({\phi_0}\) :

Initial porosity

\({\phi}\) :

Instantaneous porosity

\({\phi_E}\) :

Porosity measured by the experiment

\({\psi_{{\rm CT}}}\) :

Transforming function

λ l :

Transmissibility of phase l

μ l :

Phase viscosity of phase l

\({\psi_{{\rm CT}}}\) :

Maximum product formation rate

ρ l :

Phase density of phase l

ρ b :

Density of bacteria

Δ ρ :

Density difference between aqueous and non-aqueous phases

σσ 1σ 2 :

Volumetric fractions of bacteria attached totally reversibly, and irreversibly

σ Int, σ Int,minσ Int,max :

Interfacial tension, minimum, and maximum

\({\sigma_K^2}\) :

Variance

\({\underline{\xi}}\) :

Lag vector

References

  • Abrams A.: The influence of fluid viscosity, interfacial tension, and flow velocity on residual oil saturation left by waterflood. SPE J. 15(5), 437–447 (1975)

    Google Scholar 

  • Anton L., Hilfer R.: Trapping and mobilization of residual fluid during capillary desaturation in porous media. Phys. Rev. E. 59(6), 6819–6823 (1999)

    Article  Google Scholar 

  • Bang H.W., Caudle B.H.: Modeling of a micellar/polymer process. SPE J. 24(6), 617–627 (1984)

    Google Scholar 

  • Bryant S.L., Lockhart T.P.: Reservoir engineering analysis of microbial enhanced oil recovery. SPE. 79719, 365–374 (2002)

    Google Scholar 

  • Chang M-M., Chung F.T.-H., Bryant R.S., Gao H.W., Burchfield T.E.: Modeling and laboratory investigation of microbial transport phenomena in porous media. SPE. 22845, 299–308 (1991)

    Google Scholar 

  • Clement T.P., Hooker B.S., Skeen R.S.: Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth. Gr. Water 34(5), 934–942 (1996)

    Article  Google Scholar 

  • Delshad, M.: Trapping of Micellar Fluids in Berea Sandstone. Ph.D. Dissertation, The University of Texas, Austin (1990)

  • Delshad M., Pope G.A., Sepehrnoori K.: A compositional simulator for modeling surfactant enhanced aquifer remediation. J. Contam. Hydrol. 23, 303–327 (1996)

    Article  Google Scholar 

  • Desouky S.M., Abdel-Daim M.M., Sayyouh M.H., Dahab A.S.: Modelling and laboratory investigation of microbial enhanced oil recovery. J. Petroleum Sci. Eng. 15(2–4), 309–320 (1996)

    Article  Google Scholar 

  • Gandler G.L., Gbosi A., Bryant S.L., Britton L.N.: Mechanistic understanding of microbial plugging for improved sweep efficiency. SPE. 100048, 1–8 (2006)

    Google Scholar 

  • Gaudy A.F., Gaudy E.T.: Microbiology for Environmental Scientists and Engineers. McGraw-Hill, New York (1980)

    Google Scholar 

  • Ghadimi M.R., Ardjmand M.: Simulation of microbial enhanced oil recovery. SPE. 101767, 1–6 (2006)

    Google Scholar 

  • Gray M.R., Yeung A., Foght J.M.: Potential microbial enhanced oil recovery: a critical analysis. SPE. 114676, 1–25 (2008)

    Google Scholar 

  • Han C., Delshad M., Sepehrnoori K., Pope G.A.: A full implicit, parallel, compositional chemical flooding simulator. SPE J. 12(3), 322–338 (2007)

    Google Scholar 

  • Han C., Delshad M., Pope G.A., Sepehrnoori K.: Coupling equation-of-state compositional and surfactant models in a fully implicit parallel reservoir simulator using the equivalent-alkane-carbon-number concept. SPE J. 14(2), 302–310 (2009)

    Google Scholar 

  • Islam M.R.: Mathematical modeling of microbial enhanced oil recovery. SPE. 20480, 159–168 (1990)

    Google Scholar 

  • Jin, M.: A Study of nonaqueous phase liquid characterization and surfactant remediation. Ph.D. dissertation, The University of Texas, Austin (1995)

  • Karim M.G.A., Salim M.A.H., Zain Z.M., Talib N.N.: Microbial enhanced oil recovery (MEOR) technology in Bokor field, Sarawak. SPE. 72125, 1–12 (2001)

    Google Scholar 

  • Kim S.B.: Numerical analysis of bacterial transport in saturated porous media. Hydrol. Proc. 20, 1177–1186 (2006)

    Article  Google Scholar 

  • Li J., Liu J., Trefry M.G., Park J., Liu K., Haq B., Johnston C.D., Volk H.: Interactions of microbial enhanced oil recovery processes. Trans. Porous Med. 87(1), 77–104 (2011)

    Article  Google Scholar 

  • Li Q., Kang C., Wang H., Liu C., Zhang C.: Application of microbial enhanced oil recovery technique to Daqing oilfield. Biochem. Eng. J. 11, 197–199 (2002)

    Article  Google Scholar 

  • Li Y., Abriola L.M., Phelan T.J., Ramsburg C.A., Pennell K.D.: Experimental and numerical validation of the total trapping number for prediction of DNAPL mobilization. Environ. Sci. Technol. 41(23), 8135–8141 (2007)

    Article  Google Scholar 

  • Nielsen S.M., Shapiro A.A., Michelsen M.L., Stenby E.H.: 1D simulations for microbial enhanced oil recovery with metabolite partitioning. Trans. Porous Med. 85(3), 785–802 (2010)

    Article  Google Scholar 

  • Nielsen S.M., Jessen K., Shapiro A.A., Michelsen M.L., Stenby E.H.: Microbial enhanced oil recovery: 3D simulation with gravity effects. SPE. 131048, 1–11 (2010)

    Google Scholar 

  • Pennell K.D., Pope G.A., Abriola L.M.: Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environ. Sci. Technol. 30(4), 1328–1335 (1996)

    Article  Google Scholar 

  • Pope G.A., Wu W., Narayanaswamy G., Delshad M., Sharma M.M., Wang P.: Modeling relative permeability effects in gas-condensate reservoirs with a new trapping model. SPE Reserv. Eval. Eng. 3(2), 171–178 (2000)

    Google Scholar 

  • Van Genuchten M.Th.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  • Zhang X., Knapp R.M., McInerney M.J.: A mathematical model for microbially enhanced oil recovery process. SPE/DOE. 24202, 469–479 (1992)

    Google Scholar 

  • Zobell C.: Bacterial release of oil from sedimentary materials. Oil Gas J. 46, 62–65 (1947)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jishan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Liu, J., Trefry, M.G. et al. Impact of Rock Heterogeneity on Interactions of Microbial-Enhanced Oil Recovery Processes. Transp Porous Med 92, 373–396 (2012). https://doi.org/10.1007/s11242-011-9908-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9908-5

Keywords

Navigation