Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Field Scale Characterization of Geological Formations Using Percolation Theory

Abstract

The connectivity of high conductivity pathways in geological formations depend on the spatial distribution of geological heterogeneities that may appear on various length scales. Appropriate modeling of this is crucial within in hydrology and petroleum systems. The approach taken in this study is to use percolation theory to quantify the connectivity, hydraulic conductivity, and breakthrough time behavior between an injector and a producer within such systems. In particular, a three-dimensional overlapping sandbody model is considered which assumes that the geological formation can be split into either conductive flow units (i.e., good sands) or non-conductive units (i.e., poor sands). The results are the master curves for the formation connectivity as well as the hydraulic conductivity and breakthrough time. The percolation approach is then validated against Burgan offshore reservoir dataset which reveal good matches when compared with the results obtained from computationally expensive conventional methods.

This is a preview of subscription content, log in to check access.

References

  1. Adler P.M., Berkowitz B.: Effective medium analysis of random lattices. Transp. Porous Med. 40, 145–151 (2000)

  2. Andrade J.S., Buldyrev S.V., Dokholyan N.V., Havlin S., King P.R., Lee Y., Paul G., Stanley H.E.: Flow between two sites on a percolation cluster. Phys. Rev. E 62(6), 8270–8281 (2000)

  3. Araujo, D., Moreira, A.A., Makse, H.A., Stanley, H.E., Andrade J.S.: Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations. Phys. Rev. E (2002). doi:10.1103/PhysRevE.66.046304

  4. Baker, D.R., Paul, G., Sreenivasan, S., Stanley, H.E.: Continuum percolation threshold for interpenetrating squares and cubes. Phys. Rev. E (2002). doi:10.1103/PhysRevE.66.046136

  5. Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. (2002). doi:10.1016/S0309-1708(02)00042-8

  6. Berkowitz, B., Balberg, I.: Percolation approach to the problem of hydraulic conductivity in porous media. Transp. Porous Med. (1992). doi:10.1007/BF00611971

  7. Celzard A., Mareche, J.F.: Non-universal conductivity critical exponents in anisotropic percolating media: a new interpretation. Phys. A (2003). doi:10.1016/S0378-4371(02)01367-5

  8. de Marsily, G., Delay F., Gonsalves, J., Renard, P., Teles, V., Violette, S.: Dealing with spatial heterogeneity. Hydrogeol. J. (2005). doi:10.1007/s10040-004-0432-3

  9. Denby, P., de Groot, H.I., Guit, F., Willet, A.: Integrated development and early production scheme for the Burgan reservoir in the Soroosh and Nowrooz fields offshore Iran. SPE (2001), doi:10.2118/68200-MS

  10. Dokholyan N.V., Buldyrev S.V., Havlin S., King P.R., Lee Y., Stanley H.E.: Distribution of shortest paths in percolation. Phys. Rev. A 266, 55–61 (1999)

  11. Donato, D., Blunt, M.J.: Streamline based dual porosity simulation of reactive transport and flow in fractured reservoirs. Water Resour. Res. (2004). doi:10.1029/2003WR002772

  12. Fokker P.A.: General anisotropic effective medium theory for the effective permeability of heterogeneous reservoirs. Transp. Porous Med. 44, 205–218 (2001)

  13. Grassberger, P.: Conductivity exponent and backbone dimension in 2-d percolation. Phys. A (1999). doi:10.1016/S0378-4371(98)00435-X

  14. Hoshen J., Berry M.W., Minser K.S.: Percolation and cluster structure parameters: The enhanced Hoshen-Kopelman algorithm. Phys. Rev. E 56(2), 1456–1460 (1997)

  15. Hsieh, P.A., Shapiro, A.M., Barton, C.C., Haeni, F.P., Johnson, C.D., Martin, C.W., Paillet,, F.L., Winter, T.C., Wright D.L.: Methods of characterizing fluid movement and chemical transport in fractured rock. In: Chaney, J.T., Hepburn, J.C. (eds.) Field Trip Guidebook for North-Eastern United States, Geo. Soc. Am., Boston, Massa, pp. R1–R29 (1993)

  16. Huang, W., Donato, D.G., Blunt, M.J.: Comparison of streamline based and grid based dual porosity simulation. J. Pet. Sci. Eng. (2004). doi:10.1016/j.petrol.2004.01.002

  17. Huerlimann A.: DP Technical Report of Shell Company, Appendix Seven of Soroosh & Nowrooz Burgan Rock Properties. NISOC, Ahwaz (2004)

  18. Hunt, AG.: Some comments on the scale dependence of the hydraulic conductivity in the presence of nested heterogeneity. Adv. Water Resour. (2003). doi:10.1016/S0309-1708(02)00096-9

  19. Hunt, A.G.: Continuum percolation theory for pressure–saturation characteristics of fractal soils: extension to non-equilibrium. Adv. Water Resour. (2004). doi:10.1016/j.advwatres.2004.01.002

  20. Hunt, A.G., Gee, G.W.: Application of critical path analysis to fractal porousmedia: comparison with examples from the Hanford site. Adv. Water Resour. (2002). doi:10.1016/S0309-1708(01)00057-4

  21. Hunt, A.G., Idriss, B.: Percolation-based effective conductivity calculations for bimodal distributions of local conductances. Phil. Mag. (2009). doi:10.1080/14786430802660431

  22. Karim, M.R., Krabbenhoft, K.: New renormalization schemes for conductivity upscaling in heterogeneous media. Transp. Porous Med. (2010). doi:10.1007/s11242-010-9585-9

  23. King, P.R.: The connectivity and conductivity of overlapping sandbodies. Paper presented at 2nd international conference of north sea oil and gas reservoir, Graham & Trotman, London (1990)

  24. King, P.R., Buldyrev, S.V., Dokholyan, N.V., Havlin, S., Lee, Y., Paul, G., Stanley, H.E., Vandesteeg, N.: Predicting oil recovery using percolation theory. Pet. Geos. (2001). doi:10.1144/petgeo.7.S.S105

  25. King P.R., Buldyrev S.V., Dokholyan N.V., Havlin S., Lopez E., Paul G., Stanley H.E.: Uncertainty in oil production predicted by percolation theory. Phys. A 306, 376–380 (2002)

  26. King P.R., Buldyrev S.V., Dokholyan N.V., Havlin S., Lopez E., Paul G., Stanley H.E.: Using percolation theory to predict oil Field performance. Phys. A 314, 103–108 (2002)

  27. Knudby C., Carrera J., Bumgardner J.D., Fogg G.E.: Binary upscaling-the role of connectivity and a new formula. Adv. Water Resour. 29(1), 590–604 (2006). doi:10.1016/j.advwatres.2005.07.002

  28. Lee S.B., Torquato S.: Monte Carlo study of correlated continuum percolation: universality and percolation thresholds. Phys. Rev. A 41(10), 5338–5344 (1990)

  29. Lee Y., Andrade J.S., Buldyrev S.V., Dokholyan N.V., Havlin S., King P.R., Paul G., Stanley H.E.: Traveling time and traveling length in critical percolation clusters. Phys. Rev. E 60(3), 3245–3248 (1999)

  30. Li, W., Jensen, J.L., Ayers, W.B., Hubbard, S.M., Heidari, M.R.: Comparison of interwell connectivity predictions using percolation, geometrical, and Monte Carlo models. J. Pet. Sci. Eng. (2009). doi:10.1016/j.petrol.2009.06.013

  31. Lorenz C.D., Ziff R.M.: Precise determination of the critical percolation threshold for the three dimensional Swiss cheese model using a growth algorithm. J. Chem. Phys. 114(8), 3659–3661 (2001)

  32. Manzocchi, T.: The connectivity of two-dimensional networks of spatially correlated fractures. Water Resour. Res. (2002). doi:10.1029/2000WR000180

  33. Masihi, M., King, P.R., Nurafza, P.: Effect of anisotropy on finite-size scaling in percolation theory. Phys. Rev. E (2006). doi:10.1103/PhysRevE.74.042102

  34. Masihi, M., King, P.R., Nurafza, P.: Fast estimation of connectivity in fractured reservoirs using Percolation theory. SPEJ (2007). doi:10.2118/94186-PA

  35. Mourzenko, V.V., Thovert, J.F., Adler, P.M.: Percolation of three-dimensional fracture networks with power-law size distribution. Phys. Rev. E (2005). doi:10.1103/PhysRevE.72.036103

  36. Mukhopadhyay, S., Sahimi, M.: Calculation of the effective permeabilities of field-scale porous media. Chem. Eng. Sci. (2000). doi:10.1016/S0009-2509(00)00098-1

  37. Nurafza, P., King, P.R., Masihi, M.: Facies connectivity modeling: analysis and field study. Annual conference and exhibition SPE Europec/EAGE, Vienna, Austria (2006)

  38. Ovdat, H., Berkowitz, B.: Pore-scale study of drainage displacement under combined capillary and gravity effects in index-matched porous media. Water Resour. Res. (2006). doi:10.1029/2005WR004553

  39. Pesheva, N., Stefanov, I., Slavtchev, S.: Application of the invasion percolation model to water-gas flows in artificial soils with plants. Transp. Porous Med. (2010). doi:10.1007/s11242-009-9441-y

  40. Prakash, S., Havlin, S., Schwartz, M., Stanley, H.E.: Structural and dynamical properties of long-range correlated percolation. Phys. Rev. A (1992). doi:10.1103/PhysRevA.46.R1724

  41. Ronayne, M.J., Gorelick, S.M.: Effective permeability of porous media containing branching channel networks. Phys. Rev. E (2006). doi:10.1103/PhysRevE.73.026305

  42. Sadeghnejad, S., Masihi, M., King, P.R., Shojaei, A., Pishvaei, M.: Effect of anisotropy on the scaling of connectivity and conductivity in continuum Percolation theory. Phys. Rev. E (2010). doi:10.1103/PhysRevE.81.061119

  43. Sadeghnejad, S., Masihi, M., King, P.R., Shojaei, A., Pishvaei, M.: Reservoir conductivity evaluation using Percolation theory. Pet. Sci. Technol. (2011). doi:10.1080/10916460903502506

  44. Sahimi, M., Mukhopadhyay, S.: Scaling properties of a percolation model with long-range correlations. Phys. Rev. E (1996). doi:10.1103/PhysRevE.54.3870

  45. Schmittbuhl, J., Vilotte, J.P., Roux, S.: Percolation through self-affine surfaces. J. Phys. A (1993). doi:10.1088/0305-4470/26/22/014

  46. Stauffer D., Aharony A.: Introduction to Percolation Theory. Taylor and Francis, London (1994)

  47. Torquato, S.: Random heterogeneous materials: microstructure and macroscopic properties. Appl. Mech. Rev. (2002). doi:10.1115/1.1483342

Download references

Author information

Correspondence to Mohsen Masihi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sadeghnejad, S., Masihi, M., Shojaei, A. et al. Field Scale Characterization of Geological Formations Using Percolation Theory. Transp Porous Med 92, 357–372 (2012). https://doi.org/10.1007/s11242-011-9907-6

Download citation

Keywords

  • Percolation theory
  • Field scale investigation
  • Connectivity
  • Hydraulic conductivity
  • Breakthrough time
  • Validation