Transport in Porous Media

, Volume 92, Issue 1, pp 145–164 | Cite as

A Dynamic Network Model for Two-Phase Flow in Porous Media

  • Glenn Tørå
  • Pål-Eric Øren
  • Alex HansenEmail author


We present a dynamic model of immiscible two-phase flow in a network representation of a porous medium. The model is based on the governing equations describing two-phase flow in porous media, and can handle both drainage, imbibition, and steady-state displacement. Dynamic wetting layers in corners of the pore space are incorporated, with focus on modeling resistivity measurements on saturated rocks at different capillary numbers. The flow simulations are performed on a realistic network of a sandpack which is perfectly water-wet. Our numerical results show saturation profiles for imbibition in agreement with experiments. For free spontaneous imbibition we find that the imbibition rate follows the Washburn relation, i.e., the water saturation increases proportionally to the square root of time. We also reproduce rate effects in the resistivity index for drainage and imbibition.


Network model Two-phase flow Reconstructed porous media Imbibition Resistivity index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggelopoulos C., Klepetsanis P., Theodoropoulou M., Pomoni K., Tsakiroglou C.: Large-scale effects on resistivity index of porous media. J. Contam. Hydrol. 77(4), 299–323 (2005). doi: 10.1016/j.jconhyd.2005.02.002 CrossRefGoogle Scholar
  2. Aker E., Måløy K.J., Hansen A., Batrouni G.G.: A two-dimensional network simulator for two-phase flow in porous media. Transp. Porous Media 32, 163–186 (1998)CrossRefGoogle Scholar
  3. Akin S., Schembre J.M., Bhat S.K., Kovscek A.R.: Spontaneous imbibition characteristics of diatomite. J. Pet. Sci. Eng. 25(3–4), 149–165 (2000)CrossRefGoogle Scholar
  4. Al-Gharbi M., Blunt M.: Dynamic network modelling of two-phase drainage in porous media. Phys. Rev. E 71, 016308 (2005)CrossRefGoogle Scholar
  5. Bakke S., Øren P.: 3-D pore-scale modelling of sandstones and flow simulations in the pore networks. SPEJ 2, 136–165 (1997)CrossRefGoogle Scholar
  6. Bernadiner M.: A capillary microstructure of the wetting front. Transp. Porous Media 30, 251–265 (1998)CrossRefGoogle Scholar
  7. Bryant S., Blunt M.: Prediction of relative permeability in simple porous media. Phys. Rev. A 46(4), 2004–2011 (1992). doi: 10.1103/PhysRevA.46.2004 CrossRefGoogle Scholar
  8. Chatzis I., Dullien F.: Dynamic Immiscible displacement mechanism in pore doublets: theory versus experiment. J. Colloid Interface Sci. 91, 199–222 (1983)CrossRefGoogle Scholar
  9. Constantinides G., Payatakes A.: Effects of precursor wetting films in immiscible displacement through porous media. Transp. Porous Media 38, 291–317 (2000)CrossRefGoogle Scholar
  10. Dahle H., Celia M.: A dynamic network model for two-phase immiscible flow. Comput. Geosci. 3, 1–22 (1999). doi: 10.1023/A:1011522808132 CrossRefGoogle Scholar
  11. Dias M.M., Payatakes A.C.: Network models for two-phase flow in porous media part 1: Immiscible microdisplacement of non-wetting fluids. J. Fluid Mech. Digit. Arch. 164(1), 305–336 (1986a)Google Scholar
  12. Dias M.M., Payatakes A.C.: Network models for two-phase flow in porous media part 2: Motion of oil ganglia. J. Fluid Mech. Digit. Arch. 164(1), 337–358 (1986b)Google Scholar
  13. Dong M., Chatzis I.: The imbibition and flow of a wetting liquid along the corners of a square capillary tube. J. Colloid Interface Sci. 172(2), 278–288 (1995)CrossRefGoogle Scholar
  14. Dong M., Dullien F., Zhou J.: Characterization of waterflood saturation profile histories by the ‘complete’ capillary number. Transp. Porous Media 31, 213–237 (1998)CrossRefGoogle Scholar
  15. Dullien F.: Porous Media: Fluid Transport and Pore Structure. Academic Press, London (1992)Google Scholar
  16. Ferer M., Bromhal G.S., Smith D.H.: Pore-level modeling of immiscible drainage: validation in the invasion percolation and DLA limits. Phys. A 319, 11–35 (2003). doi: 10.1016/S0378-4371(02)01508-X CrossRefGoogle Scholar
  17. Fisher, H., Morrow, N.R.: Spontaneous imbibition with matched liquid viscosities. Paper SPE 96812, Dallas, TX (2005)Google Scholar
  18. Gauglitz P., Radke C.: The dynamics of liquid film breakup in constricted cylindrical capillaries. J. Colloid Interface Sci. 134(1), 14–40 (1990)CrossRefGoogle Scholar
  19. Han, M., Fleury, M., Levitz, P.: Effect of the pore structure on resistivity index curves. In: International Symposium of the Society of Core Analysts, Calgary, Canada (2007)Google Scholar
  20. Hashemi M., Sahimi M., Dabir B.: Percolation with two invaders and two defenders: volatile clusters, oscillations, and scaling. Phys. Rev. Lett. 80(15), 3248–3251 (1998). doi: 10.1103/PhysRevLett.80.3248 CrossRefGoogle Scholar
  21. Hassanizadeh S.M., Gray W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29, 3389–3405 (1993)CrossRefGoogle Scholar
  22. Hughes R.G., Blunt M.J.: Pore scale modeling of rate effects in imbibition. Trans. Porous Media 40, 295–322 (2000)CrossRefGoogle Scholar
  23. Idowu, N.A., Blunt, M.J.: Pore-scale modelling of rate effects in waterflooding. Transp. Porous Media (2009). doi: 10.1007/s11242-009-9468-0
  24. Jing, X., Gillespie, A., Trewin, B.: Resistivity index from non equilibrium measurements using detailed in-situ saturation monitoring. In: SPE Paper 26798, Offshore European Conference, Aberdeen, 7–10 September 1993Google Scholar
  25. Knight R.: Hysteresis in the electrical resistivity of partially saturated sandstones. Geophysics 56(12), 2139–2147 (1991)CrossRefGoogle Scholar
  26. Knudsen H., Aker E., Hansen A.: Bulk flow regimes and fractional flow in 2D porous media by numerical simulations. Transp. Porous Media 47, 99–121 (2002)CrossRefGoogle Scholar
  27. Kovscek A., Tang G.Q., Radke C.: Verification of roof snap off as a foam-generation mechanism in porous media at steady state. Colloids Surf. A 302(1–3), 251–260 (2007)CrossRefGoogle Scholar
  28. Lenormand R., Zarcone C., Sarr A.: Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. Digit. Arch. 135(1), 337–353 (1983)Google Scholar
  29. Lenormand R., Touboul E., Zarcone C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. Digit. Arch. 189(1), 165–187 (1988)Google Scholar
  30. Li Y., Wardlaw N.C.: The influence of wettability and critical pore-throat size ratio on snap–off. J. Colloid Interface Sci. 109(2), 461–472 (1986). doi: 10.1016/0021-9797(86)90324-3 CrossRefGoogle Scholar
  31. Li Y., Morrow N.R., Ruth D.: Similarity solution for linear counter-current spontaneous imbibition. J. Pet. Sci. Eng. 39(3–4), 309–326 (2003). doi: 10.1016/S0920-4105(03)00071-8 CrossRefGoogle Scholar
  32. Longeron D., Argaud M., Feraud J.: Effect of overburden pressure and the nature and microscopic distribution of the fluids on electrical properties of rock samples. J. SPE Form. Eval. 16(2), 169–179 (1989)Google Scholar
  33. Maas, J., van der Post, N., van der Gyp, K., Coenen, J., Looyestijn, W.: Resistivity index measurements under weak capillary forces. In: Paper SCA2000-18. International SCA Symposium, Abu Dhabi (2000)Google Scholar
  34. Man H.N., Jing X.D.: Network modelling of strong and intermediate wettability on electrical resistivity and capillary pressure. Adv. Water Resour. 24(3–4), 345–363 (2001). doi: 10.1016/S0309-1708(00)00061-0 CrossRefGoogle Scholar
  35. Mason G., Morrow N.R.: Capillary behavior of a perfectly wetting liquid in irregular triangular tubes. J. Colloid Interface Sci. 141(1), 262–274 (1991)CrossRefGoogle Scholar
  36. Meleán Y., Broseta D., Blossey R.: Imbibition fronts in porous media: effects of initial wetting fluid saturation and flow rate. J. Pet. Sci. Eng. 39(3–4), 327–336 (2003)CrossRefGoogle Scholar
  37. Mogensen K., Stenby E.: A dynamic two-phase pore-scale model of imbibition. Transp. Porous Media 32, 299–327 (1998)CrossRefGoogle Scholar
  38. Mogensen K., Stenby E., Banerjee S., Barker V.: Comparison of iterative methods for computing the pressure field in a dynamic network model. Transp. Porous Media 37, 277–301 (1999)CrossRefGoogle Scholar
  39. Moss A.K., Jing X.D., Archer J.S.: Laboratory investigation of wettability and hysteresis effects on resistivity index and capillary pressure characteristics. J. Pet. Sci. Eng. 24(2–4), 231–242 (1999)CrossRefGoogle Scholar
  40. Nguyen, V.H., Sheppard, A.P., Knackstedt, M.A., Pinczewski, W.V.: A dynamic network model for imbibition. In: Paper SPE 90365. Proceedings of the SPE International Petroleum Conference, Houston, Texas (2004)Google Scholar
  41. Øren P.E., Bakke S.: Reconstruction of berea sandstone and pore-scale modelling of wettability effects. J. Pet. Sci. Eng. 39(3–4), 177–199 (2003). doi: 10.1016/S0920-4105(03)00062-7 CrossRefGoogle Scholar
  42. Øren P.E., Bakke S., Arntzen O.J.: Extending predictive capabilities to network models. SPEJ 3, 324–336 (1998)CrossRefGoogle Scholar
  43. Patzek, T.W.: Verification of a complete pore network simulator of drainage and imbibition. In: Paper SPE 59312. Improved Oil Recovery Symposium, Tulsa, Oklahoma (2000)Google Scholar
  44. Ransohoff T.C., Radke C.J.: Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore. J. Colloid Interface Sci. 121(2), 392–401 (1988)CrossRefGoogle Scholar
  45. Ransohoff T.C., Gauglitz P.A., Radke C.J.: Snap-off of gas bubbles in smoothly constricted noncircular capillaries. AIChE J. 33, 753 (1987)CrossRefGoogle Scholar
  46. Roof J.: Snap-off of oil droplets in water-wet pores. SPEJ 10, 85–90 (1970)CrossRefGoogle Scholar
  47. Singh M., Mohanty K.K.: Dynamic modeling of drainage through three-dimensional porous materials. Chem. Eng. Sci. 58(1), 1–18 (2003). doi: 10.1016/S0009-2509(02)00438-4 CrossRefGoogle Scholar
  48. Sorbie K.S., Wu Y.Z., McDougall S.R.: The extended washburn equation and its application to the oil/water pore doublet problem. J. Colloid Interface Sci. 174(2), 289–301 (1995)CrossRefGoogle Scholar
  49. Sweeney S.A., Jennings H.Y.: Effect of wettability on the electrical resistivity of carbonate rock from a petroleum reservoir. J. Phys. Chem. 64, 551–553 (1960)CrossRefGoogle Scholar
  50. Tzimas G.C., Matsuura T., Avraam D.G., der Brugghen W.V., Constantinides G.N., Payatakes A.C.: The combined effect of the viscosity ratio and the wettability during forced imbibition through nonplanar porous media. J. Colloid Interface Sci. 189(1), 27–36 (1997)CrossRefGoogle Scholar
  51. Tørå, G., Øren, P.E., Hansen, A.: Dynamic network modeling of resistivity index in a steady-state procedure. In: Paper SPE 135367. Proceedings of the 2010 SPE Annual Technical Conference and Exhibition, Florence, Italy , 19–22 September 2010)Google Scholar
  52. Valvatne P.H., Blunt M.J.: Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 40, W07406 (2004)CrossRefGoogle Scholar
  53. Washburn E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273–283 (1921)CrossRefGoogle Scholar
  54. Wei, J., Lile, O.: Hysteresis of the resistivity index in berea sandstone. Advances in core evaluation I. In: 1st Society of Core Analysts European Core Analysis Symposium (1990)Google Scholar
  55. Wilkinson D., Willemsen J.F.: Invasion percolation: a new form of percolation theory. J. Phys. A 16, 3365–3376 (1983)CrossRefGoogle Scholar
  56. Worthington P., Pallatt N.: Effect of variable saturation exponent on the evaluation of hydrocarbon saturation. J. SPE Form. Eval. 7, 331–336 (1992)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Numerical Rocks ASTrondheimNorway

Personalised recommendations