Transport in Porous Media

, Volume 92, Issue 1, pp 83–100 | Cite as

Observation of Light Non-Aqueous Phase Liquid Migration in Aggregated Soil Using Image Analysis

  • Su Kong NgienEmail author
  • Norhan Abd. Rahman
  • Mustafa M. Bob
  • Kamarudin Ahmad
  • Radzuan Sa’ari
  • Roland W. Lewis


Physical model experiments were conducted to observe the migration of light non-aqueous phase liquids (LNAPL) in a double-porosity soil medium. The double-porosity characteristics of the soil were simulated through aggregation of kaolin which resulted in well-defined intra-aggregate and inter-aggregate pores. Digital images were collected to monitor LNAPL (modeled by toluene) migration. A special experimental setup was developed to enable the instantaneous capture of the LNAPL migration around the whole soil column using a single digital camera. An image processing module was applied to the captured images and the results plotted using a surface mapping programme. Events observed during the duration of the experiments were discussed. It was found that the LNAPL flowed much faster in the aggregated soil as compared to a single-porosity soil. The wettability of the fluid and the capillary pressure characteristics were demonstrated to be influential factors in immiscible fluids migration when the soil fabric showed highly contrasting porosity values.


Double-porosity Image analysis Non-aqueous phase liquids Unsaturated soil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alias, N.: Migration of light nonaqueous phase liquid (LNAPL) in unsaturated media. Universiti Teknologi Malaysia, M.Eng. Thesis (2003)Google Scholar
  2. Bagherieh A.R., Khalili N., Habibagahi G., Ghahramani A.: Drying response and effective stress in a double porosity aggregated soil. Eng. Geol. 105, 44–50 (2009)CrossRefGoogle Scholar
  3. Bai M., Elsworth D., Roegiers J.-C.: Modeling of naturally fractured reservoirs using deformation dependent flow mechanism. Int. J. Rock Mech. Min. Sci Geomech. Abstr. 30(7), 1185–1191 (1993)CrossRefGoogle Scholar
  4. Bai M., Ma Q., Roegiers J.-C.: Dual-porosity behaviour of naturally fractured reservoirs. Int. J. Numer. Anal. Methods Geomech. 18, 359–376 (1994)CrossRefGoogle Scholar
  5. Bai M., Roegiers J.-C., Inyang H.I.: Contaminant transport in nonisothermal fractured porous media. J. Environ. Eng. 122(5), 416–423 (1996)CrossRefGoogle Scholar
  6. Barenblatt G.I., Zheltov Iu.P., Kochina I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24(5), 1286–1303 (1960)CrossRefGoogle Scholar
  7. Bear J.: Dynamics of Fluids in Porous Media. Dover Publications, New York (1972)Google Scholar
  8. Bedient P.B., Rifai H.S., Newell C.J.: Ground Water Contamination—Transport and Remediation, 2nd edn. Prentice Hall, Upper Saddle River (1999)Google Scholar
  9. Berryman J.G., Wang H.F.: The elastic coefficients of double-porosity models for fluid transport in jointed rock. J. Geophys. Res. 100(B12), 24611–24627 (1995)CrossRefGoogle Scholar
  10. Bob M.M., Brooks M.C., Mravik S.C., Wood A.L.: A modified light transmission visualization method for DNAPL saturation measurements in 2-D models. Adv. Water Resour. 31, 727–742 (2008)CrossRefGoogle Scholar
  11. Carminati A., Kaestner A., Lehmann P., Fluhler H.: Unsaturated water flow across soil aggregate contacts. Adv. Water Resour. 31, 1221–1232 (2008)CrossRefGoogle Scholar
  12. Darnault C.J.G., Throop J.A., DiCarlo D.A., Rimmer A., Steenhuis T.S., Parlange J.-Y.: Visualization by light transmission of oil and water contents in transient two-phase flow fields. J. Contam. Hydrol. 31, 337–348 (1998)CrossRefGoogle Scholar
  13. Darnault C.J.G., DiCarlo D.A., Bauters T.W.J., Jacobson A.R., Throop J.A., Montemagno C.D., Parlange J.-Y., Steenhuis T.S.: Measurements of fluid contents by light transmission in transient three-phase oil-water-air systems in sand. Water Resour. Res. 37(7), 1859–1868 (2001)CrossRefGoogle Scholar
  14. Davidson E.A., Trumbore S.E.: Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus 47, 550–565 (1995)CrossRefGoogle Scholar
  15. Faust C.R.: Transport of immiscible fluids within and below the unsaturated zone: A numerical model. Water Resour. Res. 21(4), 587–596 (1985)CrossRefGoogle Scholar
  16. Food and Agriculture Organization: Drought-Resistant Soils—Optimization of Soil Moisture for Sustainable Plant Production. FAO Land and Water Bulletin 11. Food and Agriculture Organization of the United Nations, Rome (2005)Google Scholar
  17. Ghafouri H.R., Lewis R.W.: A finite element double porosity model for heterogeneous deformable porous media. Int. J. Numer. Anal. Methods Geomech. 20, 831–844 (1996)CrossRefGoogle Scholar
  18. Ghezzehei TA., Or D.: Pore-space dynamics in a soil aggregate bed under a static external load. Soil Sci. Soc. Am. J. 67, 12–19 (2003)CrossRefGoogle Scholar
  19. Hillel D.: Environmental Soil Physics. Academic Press, San Diego (1998)Google Scholar
  20. Huling S.G., Weaver J.W.: Dense Nonaqueous Phase Liquids, EPA/540/4-91-002. United States Environmental Protection Agency, Washington, DC (1991)Google Scholar
  21. International Atomic Energy Agency: Field Estimation of Soil Water Content—A Practical Guide to Methods, Instrumentation and Sensor Technology, IAEA-TCS-30. International Atomic Energy Agency, Vienna (2008)Google Scholar
  22. Kazemi H., Merrill L.S.Jr., Porterfield K.L., Zeman P.R.: Numerical simulation of water-oil flow in naturally fractured reservoirs. Soc. Pet. Eng. J. 16(6), 317–326 (1976)Google Scholar
  23. Kechavarzi C., Soga K., Wiart P.: Multispectral image analysis method to determine dynamic fluid saturation distribution in two-dimensional three-fluid phase flow laboratory experiments. J. Contam. Hydrol. 46, 265–293 (2000)CrossRefGoogle Scholar
  24. Koliji A., Vulliet L., Laloui L.: New basis for the constitutive modelling of aggregated soils. Acta Geotech. 3, 61–69 (2008)CrossRefGoogle Scholar
  25. Lewandowska J., Szymkiewicz A., Gorczewska W., Vauclin M.: Infiltration in a double-porosity medium: Experiments and comparison with a theoretical model. Water Resour. Res. 41, W02022 (2005)CrossRefGoogle Scholar
  26. Lewandowska J., Ngoc T.D.T., Vauclin M., Bertin H.: Water drainage in double-porosity soils: Experiments and micro-macro modeling. J. Geotech. Geoenviron. Eng. 134(2), 231–243 (2008)CrossRefGoogle Scholar
  27. Lewis R.W., Ghafouri H.R.: A novel finite element double porosity model for multiphase flow through deformable fractured porous media. Int. J. Numer. Anal. Methods Geomech. 21, 789–816 (1997)CrossRefGoogle Scholar
  28. Lewis R.W., Pao W.K.S.: Numerical simulation of three-phase flow in deforming fractured reservoirs. Oil Gas Sci. Technol. 57(5), 499–514 (2002)CrossRefGoogle Scholar
  29. Mercer J.W., Cohen R.M.: A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J. Contam. Hydrol. 6, 107–163 (1990)CrossRefGoogle Scholar
  30. Mitchell J.K., Soga K.: Fundamentals of soil behavior, 3rd edn. Wiley, Hoboken (2005)Google Scholar
  31. Nambi I.M., Powers S.E.: NAPL dissolution in heterogeneous systems: an experimental investigation in a simple heterogeneous system. J. Contam. Hydrol. 44, 161–184 (2000)CrossRefGoogle Scholar
  32. Newell C.J., Acree S.D., Ross R.R., Huling S.G.: Light Nonaqueous Phase Liquids, EPA/540/S-95/500. United States Environmental Protection Agency, Washington, DC (1995)Google Scholar
  33. Pao W.K.S., Lewis R.W.: Three-dimensional finite element simulation of three-phase flow in a deforming fissured reservoir. Comput. Methods Appl. Mech. Eng. 191, 2631–2659 (2002)CrossRefGoogle Scholar
  34. Pokrajac D., Deletic A.: Experimental study of LNAPL migration in the vicinity of a steep groundwater table. Soils Found 46(3), 271–280 (2006)CrossRefGoogle Scholar
  35. Powers S.E., Tamblin M.E.: Wettability of porous media after exposure to synthetic gasolines. J. Contam. Hydrol. 19, 105–125 (1995)CrossRefGoogle Scholar
  36. Sara M.N.: Site Assessment and Remediation Handbook, 2nd edn. Lewis Publishers, Boca Raton (2003)CrossRefGoogle Scholar
  37. Suchomel E.J., Pennell K.D.: Reductions in contaminant mass discharge following partial mass removal from DNAPL source zones. Environ. Sci. Technol. 40(19), 6110–6116 (2006)CrossRefGoogle Scholar
  38. Soil Science Society of America: Glossary of Soil Science Terms. Soil Science Society of America, Madison (1987)Google Scholar
  39. Testa S.M., Winegardner D.L.: Restoration of Contaminated Aquifers—Petroleum Hydrocarbons and Organic Compounds, 2nd edn. CRC Press, Boca Raton (2000)CrossRefGoogle Scholar
  40. Valliappan S., Khalili-Naghadeh N.: Flow through fissured porous media with deformable matrix. Int. J. Numer. Methods Eng. 29, 1079–1094 (1990)CrossRefGoogle Scholar
  41. van Golf-Racht T.D.: Fundamentals of Fractured Reservoir Engineering. Elsevier, Amsterdam (1982)Google Scholar
  42. Warren J.E., Root P.J.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3, 245–255 (1963)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Su Kong Ngien
    • 1
    Email author
  • Norhan Abd. Rahman
    • 1
    • 2
  • Mustafa M. Bob
    • 2
  • Kamarudin Ahmad
    • 1
  • Radzuan Sa’ari
    • 1
  • Roland W. Lewis
    • 3
  1. 1.Faculty of Civil EngineeringUniversiti Teknologi MalaysiaUTM SkudaiMalaysia
  2. 2.College of EngineeringTaibah UniversityMadinahKingdom of Saudi Arabia
  3. 3.School of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations