Transport in Porous Media

, Volume 92, Issue 1, pp 41–59 | Cite as

On Mathematical Modeling and Simulation of the Pressing Section of a Paper Machine Including Dynamic Capillary Effects: One-Dimensional Model

  • O. Iliev
  • G. PrintsyparEmail author
  • S. Rief


This study presents the dynamic capillary pressure model (Hassanizadeh and Gray, Adv Water Resour 13:169–186, 1990; Water Resour Res 29:3389–3405, 1993) adapted for the needs of paper manufacturing process simulations. The dynamic capillary pressure–saturation relation is included in a one-dimensional simulation model for the pressing section of a paper machine. The one-dimensional model is derived from a two-dimensional model by averaging with respect to the vertical direction. Then, the model is discretized by the finite volume method and solved by Newton’s method. The numerical experiments are carried out for parameters typical for the paper layer. The dynamic capillary pressure–saturation relation shows significant influence on the distribution of water pressure. The behavior of the solution agrees with laboratory experiments (Beck, Fluid pressure in a press nip: measurements and conclusions, 1983).


Steady modified Richards’ equation Finite volume method Dynamic capillary pressure Pressing section of a paper machine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barenblatt G.I., Gilman A.A.: Nonequilibrium counterflow capillary impregnation. J. Eng. Phys. 52, 335–339 (1987)CrossRefGoogle Scholar
  2. Barenblatt, G.I., Patzek, T.W., Silin, D.B.: The Mathematical Model of Non-Equilibrium Effects in Water–Oil Displacement. In: SPE/DOE 13th Symposium on Improved Oil Recovery, vol. SPE 75169, Tusla, USA (2002)Google Scholar
  3. Bear J.: Dynamics of Fluids in Porous Media. American Elsevier Pub. Co., New York (1972)Google Scholar
  4. Bear J., Bachmat Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer, Dordrecht (1990)CrossRefGoogle Scholar
  5. Bear J., Verruijt A.: Modeling Groundwater Flow and Pollution. Reidel, Dordrecht (1987)CrossRefGoogle Scholar
  6. Beck, D.: Fluid pressure in a press nip: measurements and conclusions. Engineering Conference Proceedings, TAPPI, Atlanta, GA, pp. 475–487 (1983)Google Scholar
  7. Bermond C.: Establishing the scientific base for energy efficiency in emerging pressing and drying technologies. Appl. Therm. Eng. 17(8–10), 901–910 (1997)CrossRefGoogle Scholar
  8. Bezanovic D., van Duijn C.J., Kaasschieter E.F.: Analysis of paper pressing: the saturated one-dimensional case. J. Appl. Math. Mech. 86(1), 18–36 (2006)Google Scholar
  9. Bezanovic, D., van Duijn, C.J., Kaasschieter, E.F.: Analysis of wet pressing of paper: the three-phase model. Part 1: constant air density. Report CASA 05-16 of the Department of Mathematics and Computer Science, Eindhoven, University of Technology (2007a)Google Scholar
  10. Bezanovic D., van Duijn C.J., Kaasschieter E.F.: Analysis of wet pressing of paper: the three-phase model. Part 2: compressible air case. Transp. Porous Med. 67, 171–187 (2007b)CrossRefGoogle Scholar
  11. Bourgeat A., Panfilov M.: Effective two-phase flow through highly heterogeneous porous media: Capillary nonequilibrium effects. Comput. Geosci. 2, 191–215 (1998)CrossRefGoogle Scholar
  12. Broocks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media. In: Hydrol. Pap., vol. 3. Fort Collins, Colorado State University (1964)Google Scholar
  13. Deuflhard P.: Newton Methods for Nonlinear Problems. Affine invariance and adaptive algorithms. Computational Mathematics, vol. 35. Springer, Berlin (2004)Google Scholar
  14. Eymard, R., Gallouet, T., Herbin, R.: Finite Volume Methods. An Update of the Preprint no 97-19 du LATP, UMR 6632, Marseille, Sept 1997 (2006)Google Scholar
  15. Hassanizadeh S.M., Celia M.A., Dahle H.K.: Dynamic effect in the capillary pressure–saturation relationship and its impacts on unsaturated flow. Vadose Zone J. 1, 38–57 (2002)Google Scholar
  16. Hassanizadeh S.M., Gray W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13, 169–186 (1990)CrossRefGoogle Scholar
  17. Hassanizadeh S.M., Gray W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29, 3389–3405 (1993)CrossRefGoogle Scholar
  18. Helmig R.: Multiphase flow and Transport Processes in the Subsurface. Springer (Environmental Engineering), Berlin (1997)Google Scholar
  19. Hiltunen, K.: Mathematical and Numerical Modelling of Consolidation Processes in Paper Machines. PhD Thesis, University of Jyväskylä, Finland (1995)Google Scholar
  20. Iliev, O., Printsypar, G., Rief, S.: A One-Dimensional Model of the Pressing Section of a Paper Machine Including Dynamic Capillary Effects. Berichte des Fraunhofer ITWM, Nr. 206 (2011)Google Scholar
  21. Jewett, K., Ceckler, W., Busker, L., Co, A.: Computer model of a transversal flow nip. AIChE Symposium Series 76 (200), pp. 59–70, New York (1980)Google Scholar
  22. Joekar-Niasar V., Hassanizadeh S.M.: Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network modeling. Int. J. Multiphase Flow 37, 198–214 (2010). doi: 10.1016/j.ijmultiphaseflow.2010.09.007 CrossRefGoogle Scholar
  23. Kalaydjian F.: Dynamic capillary pressure curve for water/oil displacement in porous media: Theory vs. experiment. Soc. Petrol. Eng. SPE 24813, 491–506 (1992)Google Scholar
  24. Kataja M., Hiltunen K., Timonen J.: Flow of water and air in a compressible porous medium. A model of wet pressing of paper. J. Phys. D 25, 1053–1063 (1992)CrossRefGoogle Scholar
  25. Kelley C.T.: Iterative Methods for Linear and Nonlinear Equations, Fundamental Algorithms for Numerical Calculations. SIAM, Philadelphia (1995)CrossRefGoogle Scholar
  26. Leverett M.C.: Capillary Behavior in Porous Solids. Trans. AIME 142, 152–169 (1941)Google Scholar
  27. Manthey, S.: Two-phase flow processes with dynamic effects in porous media—parameter estimation and simulation. Dissertation, Institute of Hydraulic Engineering of Stuttgart, Germany (2006)Google Scholar
  28. Metso Corporation: (May 2010)
  29. Rief, S.: Modeling and simulation of the pressing section of a paper machine. Berichte des Fraunhofer ITWM, Nr. 113 (2007)Google Scholar
  30. Rief, S.: Nonlinear Flow in Porous Media. Dissertation, University of Kaiserslautern, Germany (2005)Google Scholar
  31. Samarskij, A.A.: Introduction to Theory of Difference Schemes. Moscow, Nauka, in Russian (1971)Google Scholar
  32. Van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)CrossRefGoogle Scholar
  33. Velten K., Best W.: Rolling of unsaturated porous materials: Evolution of a fully saturated zone. Phys. Rev. E 62, 3891–3899 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Flow and Material SimulationFraunhofer Institute for Industrial Mathematics (ITWM)KaiserslauternGermany
  2. 2.Technical University KaiserslauternKaiserslauternGermany

Personalised recommendations