Skip to main content
Log in

Fractional Flow Approach to Saturation Overshoot

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Saturation overshoot is observed for 1D vertical infiltrations (liquid replacing gas) in many porous media. Aspects of these infiltrations are often described using the Richards equation, which assumes that the gas viscosity is negligible compared to the liquid viscosity. Here, we develop a multi-phase, fractional flow approach to describe the physics behind the displacement front that includes the viscosity of the gas. We show that an overshoot profile will draw in gas behind the overshoot tip. We compare the fractional flow solution to the Richards equation solution and to experimental data, and show that the air viscosity plays an observable role when the infiltrating flux is greater than 50% of the saturated conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

Arbitrary constant (arbitrary)

K :

Permeability (m2)

K h :

Hydraulic conductivity (m/s)

g :

Gravity component in flow direction (m/s2)

k ri :

Relative permeability of phase i (–)

f :

Fractional flow of phase 1 (–)

f c :

Capillary component of fractional flow of phase 1 (–)

f g :

Gravity component of fractional flow of phase 1 (–)

f v :

Viscous component of fractional flow of phase 1 (–)

f vg :

Viscous and gravity component of fractional flow of phase 1 (–)

L t :

Length of finger tip (m)

P atm :

Atmospheric pressure (Pa)

P c :

Capillary pressure (Pa)

P cb :

Air entry capillary pressure (Pa)

P c′:

Derivative of capillary pressure with respect to saturation (Pa)

P i :

Pressure of phase i (Pa)

S i :

Saturation of phase i (–)

S :

Saturation of phase 1 (–)

t :

Time (s)

u i :

Flux of phase i (m/s)

v :

Wave velocity (m/s)

v s :

Shock velocity (m/s)

z :

Vertical distance-positive downward (m)

z b :

Vertical distance at the beginning of the finger tip (m)

z e :

Vertical distance at the end of the finger tip (m)

Δρ :

Density difference of phases 1 and 2 (kg/m3)

η :

Traveling wave (inner) variable (m)

λ i :

Mobility of phase i ((Pa s)−1)

μ i :

Viscosity of phase i (Pa s)

\({\phi}\) :

Porosity (–)

ρ i :

Density of phase i (kg/m3)

−:

Value immediately downstream of shock

+:

Value immediately upstream of shock

C :

Value at point C

i :

Phase i

I :

Initial value

J :

Final value

K :

Overshoot value

T :

Total value

References

  • Aminzadeh B., DiCarlo D.A.: The transition between sharp and diffusive wetting fronts as a function of imbibing fluid properties. Vad. Zone J. 9, 1–9 (2010)

    Article  Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)

    Google Scholar 

  • Brooks R., Corey A.: Hydraulic Properties of Porous Media, Hydrology Paper No. 3. Colorado State University, Fort Collins, Colo (1964)

    Google Scholar 

  • Brustkern R.L., Morel-Seytoux H.J.: Analytical treatment of two-phase infiltration. J. Hydraul. Div. ASCE 96(HY12), 2535–2548 (1970)

    Google Scholar 

  • Brustkern R.L., Morel-Seytoux H.J.: Description of water and air movement during infiltration. J. Hydrol. 24(1-2), 21–35 (1975)

    Article  Google Scholar 

  • Buckley S., Leverett M.: Mechanism of fluid displacement in sands. Trans. AIME 146, 107–116 (1942)

    Google Scholar 

  • Camps-Roach G., O’Carroll D., Newson T., Sakaki T., Illangasekare T.H.: Experimental investigation of dynamic effects in capillary pressure: grain size dependency and upscaling. Water Resour. Res. 46, W08544 (2010). doi:10.1029/2009WR008881

    Article  Google Scholar 

  • Cueto-Felgueroso L., Juanes R.: Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Phys. Rev. Lett. 101(24), 244504 (2008)

    Article  Google Scholar 

  • Cueto-Felgueroso L., Juanes R.: A phase field model of unsaturated flow. Water Resour. Res. 45, W10409 (2009)

    Article  Google Scholar 

  • DiCarlo D.A.: Drainage in finite-sized unsaturated zones. Adv. Water Resour. 26, 1257–1266 (2003)

    Article  Google Scholar 

  • DiCarlo D.A.: Experimental measurements of saturation overshoot on infiltration. Water Resour. Res. 40, W04215 (2004)

    Article  Google Scholar 

  • DiCarlo D.A.: Modeling observed saturation overshoot with continuum additions to standard unsaturated theory. Adv. Water Resour. 28(10), 1021–1027 (2005)

    Article  Google Scholar 

  • DiCarlo D.A.: Quantitative network model predictions of saturation behind infiltration fronts and comparison to experiments. Water Resour. Res. 42, W07408 (2006). doi:10.1029/2005WR004750

    Article  Google Scholar 

  • DiCarlo D.A.: Capillary pressure overshoot as a function of imbibition flux and initial water content. Water Resour. Res. 43, W08402 (2007). doi:10.1029/2006WR005550

    Article  Google Scholar 

  • DiCarlo D.A., Seale L.D., Ham K., Willson C.S.: Tomographic measurements of pore filling at infiltration fronts. Adv. Water Resour. 33(4), 485–492 (2010)

    Article  Google Scholar 

  • Egorov A., Dautov R.Z., Nieber J.L., Sheshukov A.Y.: Stability analysis of gravity-driven infiltrating flow. Water Resour. Res. 39(9), 1266 (2003). doi:10.1029/2002WR001886

    Article  Google Scholar 

  • Eliassi M., Glass R.J.: On the continuum-scale modeling of gravity-driven fingers in unsaturated porous media: The inadequacy of the richards equation with standard monotonic constitutive relations and hysteretic equations of state. Water Resour. Res. 37(8), 2019–2035 (2001)

    Article  Google Scholar 

  • Eliassi M., Glass R.J.: On the porous-continuum modeling of gravity-driven fingers in unsaturated materials: Extension of standard theory with a hold-back-pile-up effect. Water Resour. Res. 38(11), 1234 (2002)

    Article  Google Scholar 

  • Eliassi M., Glass R.J.: On the porous continuum-scale modeling of gravity-driven fingers in unsaturated materials: Numerical solution of a hypodiffusive governing equation that incorporates a hold-back-pile-up effect. Water Resour. Res. 39(6), 1167 (2003)

    Article  Google Scholar 

  • Geiger S.L., Durnford D.S.: Infiltration in homogeneous sands and a mechanistic model of unstable flow. Soil Sci. Soc. Am. J. 64(2), 460–469 (2000)

    Article  Google Scholar 

  • Glass R.J., Parlange J.-Y., Steenhuis T.: Mechanism for finger persistence in homogenous unsaturated, porous media: theory and verification. Soil Sci. 148(1), 60–70 (1989)

    Article  Google Scholar 

  • Helfferich F.: Theory of multicomponent, multiphase displacement in porous media. SPE J. 271, 51–62 (1981)

    Google Scholar 

  • Hillel D.: Applications of Soil Physics. Academic Press, San Diego, CA (1980)

    Google Scholar 

  • Lake L.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  • Morel-Seytoux H.J., Khanji J.: Derivation of an equation of infiltration. Water Resour. Res. 10(4), 795–800 (1974)

    Article  Google Scholar 

  • Nieber J., Dautov R., Egorov A., Sheshukov A.: Dynamic capillary pressure mechanism for instability in gravity-driven flows; review and extension to very dry conditions. Transp. Porous Media 58(1–2), 147–172 (2005)

    Article  Google Scholar 

  • Orr F.M. Jr.: Gas Injection Processes, 1st ed. Tie-Line Publications, Holte (2007)

    Google Scholar 

  • Philip J.R.: The theory of infiltration: 2. The profile of infinity. Soil Sci. 83(6), 435–448 (1957)

    Article  Google Scholar 

  • Raats P.A.C.: Unstable wetting fronts in uniform and nonuniform soils. Soil Sci. Soc. Am. Proc. 37(5), 681–686 (1973)

    Article  Google Scholar 

  • Selker J., Parlange J.-Y., Steenhuis T.: Fingered flow in two dimensions: 2. Predicting finger moisture profile. Water Resour. Res. 28, 2523–2528 (1992)

    Article  Google Scholar 

  • Stonestrom D.A., Akstin K.C.: Nonmonotonic matric pressure histories during constant flux infiltration into homogeneous profiles. Water Resour. Res. 30(1), 81–91 (1994)

    Article  Google Scholar 

  • Touma J., Vauclin M.: Experimental and numerical analysis of two-phase infiltration in a partially saturated soil. Transp. Porous Media 1, 27–55 (1986). doi:10.1007/BF01036524

    Article  Google Scholar 

  • van Duijn C., Pieters G., Raats P.: Steady flows in unsaturated soils are stable. Transp. Porous Media 57(2), 215–244 (2004)

    Article  Google Scholar 

  • van Duijn C., Peletier L., Pop I.: A new class of entropy solutions of the Buckley–Leverett equation. SIAM J. Math. Anal. 39(2), 507–536 (2007)

    Article  Google Scholar 

  • van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • Welge H.: A simplified method for computing oil recovery by gas or water drive. Trans. AIME 195, 91–98 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. DiCarlo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiCarlo, D.A., Mirzaei, M., Aminzadeh, B. et al. Fractional Flow Approach to Saturation Overshoot. Transp Porous Med 91, 955–971 (2012). https://doi.org/10.1007/s11242-011-9885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9885-8

Keywords

Navigation