Skip to main content
Log in

A Water Retention Curve Model for the Simulation of Coupled Thermo-Hydro-Mechanical Processes in Geological Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper presents a new water retention curve (WRC) model for the simulation of coupled thermo-hydro-mechanical processes in geological porous media. The model simultaneously considers the impact of porosity and temperature on suction, for both wetting processes and drying processes. The model is based on an idealization of porous geological media as having an isotropic and homogeneous microscopic pore structure. Suction is expressed as a function of degree of saturation, porosity, surface tension of the water–air interface, and the length of air bubble perimeter of the pores per unit area on a random 2D cross-section of the medium. The tension of water–air interface is written as a function of temperature, and the length of perimeter of the water–air interface of the pores becomes a function of porosity and degree of saturation. The final equation of the new WRC is a function of suction, effective degree of saturation, temperature, porosity, pore-gas pressure, and the rate of degree of saturation change with time for both wetting and drying processes. The model was used to fit experimental data of the FEBEX bentonite, with good agreements between measured and calculated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmann J., van der Plog R.: A review on recent developments in soil water retention theory: interfacial tension and temperature effects. J. Plant Nutr. Soil Sci. 165, 468–478 (2002)

    Article  Google Scholar 

  • Bachmann J., Horton R., Grant S.A., van der Ploeg R.R.: Temperature dependence of water retention curve for wettable and water-repellent soils. Soil Sci. Soc. Am. J. 66, 44–52 (2002)

    Article  Google Scholar 

  • Bauters T.W.J., DiCarlo D.A., Steenhuis T.S., Parlange J.Y.: Preferential flow in water-repellent sands. Soil Sci. Soc. Am. J. 62, 1185–1190 (1998)

    Article  Google Scholar 

  • Braddock R.D., Parlange J.Y., Lee H.: Application of a soil water hysteresis model to simple water retention curves. Transp. Porous Media 44, 407–420 (2001)

    Article  Google Scholar 

  • Brooks, R., Corey, A.: Hydraulic Properties of Porous Media. Hydrology Paper No. 3, Colorado State University, Fort Collins, CO (1964)

  • Brutsaert W.: Probability laws for pore size distributions. Soil Sci. 101, 85–92 (1966)

    Article  Google Scholar 

  • Buckingham, E.: Studies on the Movement of Soil Moisture. Bulletin 38. USDA, Bureau of Soils, Washington DC (1907)

  • Chan T.P., Govindaraju R.S.: Estimating soil water retention curve from particle-size distribution data based on polydisperse sphere systems. Vadose Zone J. 3, 1443–1454 (2004)

    Google Scholar 

  • Constantz J.: Comparison of isothermic and isobaric water retention paths in non-swelling porous materials. Water Resour. Res. 27, 3165–3170 (1991)

    Article  Google Scholar 

  • Fredlund D.G., Rahardjo H.: Soil Mechanics for Unsaturated Soils. Wiley, New York (1993)

    Book  Google Scholar 

  • Fredlund D.G., Xing A.: Equations for the soil–water characteristic curve. Can. Geotech. J. 31, 521–532 (1994)

    Article  Google Scholar 

  • Gens, A.: Specification of laboratory benchmark 3. Internal Document of Work Package 4, THERESA Project (2007)

  • Grant S.A., Salehzadeh A.: Calculations of temperature effects on wetting coefficients of porous solid and their capillary pressure functions. Water Resour. Res. 32, 261–279 (1996)

    Article  Google Scholar 

  • Hopmans J.W., Dane J.H.: Temperature dependence of soil hydraulic properties. Soil Sci. Soc. Am. J. 50, 4–9 (1986)

    Article  Google Scholar 

  • Horn R.: Time dependency of soil mechanical properties and pore functions for arable soils. Soil Sci. Soc. Am. J. 68, 1131–1137 (2004)

    Article  Google Scholar 

  • Horton R., Alkeny M.D., Allmaras R.R.: Effects of compaction on soil hydraulic properties. In: Soane, B.D., Ouwerkerk, C. (eds) Soil Compaction in Crop Production, pp. 141–165. Elsevier, Amsterdam (1994)

    Google Scholar 

  • Hudson J.A., Stephansson O., Andersson J.: Guidance on numerical modeling of thermo-hydro-mechanical coupled processes for performance assessment of radioactive waste repositories. Int. J. Rock Mech. Min. Sci. 42, 850–870 (2005)

    Article  Google Scholar 

  • International Association for the Properties of Water and Steam: IAPWS release on surface tension of ordinary water substance. September 1994

  • Jury W.A., Cardner W.R., Gardner W.H.: Soil Physics. Wiley, New York (1991)

    Google Scholar 

  • Kawai K., Karube D., Kato S.: The model of water retention curve considering effects of void ratio. In: Rahardjo, H., Toll, D.G., Leong, E.C. (eds) Unsaturated Soils for Asia, pp. 329–334. Balkema, Rotterdam (2000)

    Google Scholar 

  • Kosugi K.: The parameter lognormal distribution model for soil water retention. Water Resour. Res. 30, 891–901 (1994)

    Article  Google Scholar 

  • Leij F.J., Ghezzehei T.A., Or D.: Modeling the dynamics of the soil pore-size distribution. Soil Tillage Res. 6, 61–78 (2002)

    Article  Google Scholar 

  • Marmur A., Cohen R.: Characterization of porous media by the kinetics of liquid penetration: the vertical capillaries model. J. Colloid Interface Sci. 189, 299–304 (1997)

    Article  Google Scholar 

  • McKee, C., Bumb, A.: The importance of unsaturated flow parameters in designing a hazardous waste site. In: Hazardous Wastes and Environmental Emergencies. Hazardous Materials Control Research Institute National Conference, pp. 50–58. Houston, TX, March 1984

  • Morel-Seytoux H.J., Nimmo J.R.: Soil water retention and maximum capillary drive from saturation to oven dryness. Water Resour. Res. 35, 2031–2041 (1999)

    Article  Google Scholar 

  • Morrow N.R.: The effects of surface roughness on contact angle with special reference to petroleum recovery. J. Can. Petrol. Technol. 14, 42–53 (1975)

    Google Scholar 

  • Mualem Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513–522 (1976)

    Article  Google Scholar 

  • Nimmo J.R.: Semiempirical model of soil water hysteresis. Soil Sci. Soc. Am. J. 56, 1723–1730 (1992)

    Article  Google Scholar 

  • Nimmo J.R.: Modeling structural influences on soil water retention. Soil Sci. Soc. Am. J. 61, 712–719 (1997)

    Article  Google Scholar 

  • Nimmo J.R., Miller E.E.: The temperature dependence of isothermal moisture vs. potential characteristics of soils. Soil Sci. Soc. Am. J. 50, 1105–1113 (1986)

    Article  Google Scholar 

  • Pech A.J.: Change of moisture tension with temperature and air pressure. Soil Sci. 89, 303–310 (1960)

    Article  Google Scholar 

  • Ross P.J., Williams J., Britow K.L.: Equation for extending water retention curves to dryness. Soil Sci. Soc. Am. J. 55, 923–927 (1991)

    Article  Google Scholar 

  • Russo D.: Determining soil hydraulic properties by parameter estimation: on the selection of a model for the hydraulic properties. Water Resour. Res. 24, 453–459 (1988)

    Article  Google Scholar 

  • Salehzadeh, A.: The temperature dependence of soil-moisture characteristics of agricultural soils. Ph.D. thesis, Abstracts No. AAD91-01559. University of Wisconsin, Madison, WI (1990)

  • She H.Y., Sleep B.E.: The effect of temperature on capillary pressure-saturation relationships for air-water and tetrachloroethylene-water systems. Water Resour. Res. 34, 2587–2597 (1998)

    Article  Google Scholar 

  • Stange C.F., Horn R.: Modeling the soil water retention curve for conditions of variable porosity. Vadose Zone J. 4, 602–613 (2005)

    Article  Google Scholar 

  • Stephansson O., Jing L., Tsang C.-F.: Coupled Thermo-Hydro-Mechanical Processes of Fractured Media. Elsevier, Amsterdam (1996)

    Google Scholar 

  • Tang A.-M., Cui Y.J., Le T.T.: A study on the thermal conductivity of compacted bentonites. Appl. Clay Sci. 41, 181–189 (2008)

    Article  Google Scholar 

  • Vanapalli S.K., Fredlund D.G., Pufahl D.E., Clifton A.W.: Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J. (Ottawa) 33, 379–392 (1996)

    Article  Google Scholar 

  • Vanapalli S.K., Pufahl D.E., Fredlund D.G.: The influence of soil structure and stress history on the soil–water characteristic of a compacted till. Geotechnique 49(2), 143–159 (1999)

    Article  Google Scholar 

  • van Genuchten M.T.: A closed form equation predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • Villar, M.V.: Thermo-hydro-mechanical characterization of a bentonite from Cabo de Gata. A study applied to the use of bentonite as sealing material in high level radioactive waste repositories. Publicación Técnica ENRESA 01/2002, 258 pp, Madrid (2002)

  • Villar M.V., Lloret A.: Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Appl. Clay Sci. 26, 337–350 (2004)

    Article  Google Scholar 

  • Villar M., Garcia-Sineriz J., Barecena I., Lloret A.: State of the bentonite barrier after five years operation of an in situ test simulating a high level radioactive waste repository. Eng. Geol. 81, 317–328 (2005)

    Article  Google Scholar 

  • Yu, J.W., Neretnieks, I.: Diffusion and sorption properties of radionuclides in compacted bentonite. Report SKB TR-97-12, Svensk Kaernbraenslehantering AB, Stockholm (1997)

  • Zimmerman R.W., Bodvarsson G.S.: An approximate solution for one-dimensional absorption in unsaturated porous media. Water Resour. Res. 25, 1422–1428 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuguo Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, F., Jing, L. & Bin, T. A Water Retention Curve Model for the Simulation of Coupled Thermo-Hydro-Mechanical Processes in Geological Porous Media. Transp Porous Med 91, 509–530 (2012). https://doi.org/10.1007/s11242-011-9857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9857-z

Keywords

Navigation