Advertisement

Transport in Porous Media

, Volume 89, Issue 3, pp 307–321 | Cite as

Investigation of Groundwater Contaminant Discharge into Tidally Influenced Surface-Water Bodies: Experimental Results

  • Hua ChenEmail author
  • George F. Pinder
Article

Abstract

An investigation of the effect of tidally influenced water elevations on the concentration of groundwater contaminants discharging to a surface-water body is studied using a one-dimensional homogeneous sand column. A constant water level is imposed upstream, and the downstream water level is controlled by a wave generator that controls the hydraulic head to mimic a 12-h tidal fluctuation. The experimental results demonstrate that the tidal fluctuations in the downstream reservoir result in a decrease in average contaminant concentration at the point of discharge to the tidally influenced surface-water body. The further upstream an observation well is located, the smaller the amplitude of the concentration oscillation. Fourier analysis suggests that the dominant frequency of the pressure at different locations along the length of the column is identically two cycles per day and that the concentration data have a dominant frequency of two cycles per day, but also exhibit harmonics.

Keywords

Tidal fluctuation Concentration oscillation Groundwater transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boutt, D.F., Fleming, B.J.: Implications of anthropogenic river stage fluctuations on mass transport in a valley fill aquifer. Water Resour. Res. 45. (2009). doi: 10.1029/2007WR006526
  2. Bowles J.E.: Foundation Analysis and Design, 5th edn. McGraw-Hill, New York (1996)Google Scholar
  3. Chen, H.: Investigation of contaminant transport in tidally-influenced aquifers: experiment and analysis. Dissertation, University of Vermont (2010)Google Scholar
  4. Croke B., Cleridou N., Kolovos A., Vardavas I., Papamastorakis J.: Water resources in the desertification-threatened Messara Valley of Crete: estimation of the annual water budget using a rainfall-runoff model. Environ. Modell. Softw. 15(4), 387–402 (2000)CrossRefGoogle Scholar
  5. Dalton F.N. et al.: Time-domain reflectometry: simultaneous measurement of soil-water content and electrical-conductivity with a single probe. Science 224(4652), 989–990 (1984)CrossRefGoogle Scholar
  6. Ebrahimi K., Falconer R.A., Lin B.L.: Flow and solute fluxes in integrated wetland and coastal systems. Environ. Modell. Softw. 22(9), 1337–1348 (2007)CrossRefGoogle Scholar
  7. Elfeki A.M.M., Uffink G.J.M., Lebreton S.: Simulation of solute transport under oscillating groundwater flow in homogeneous aquifers. J. Hydraul. Res. 45(2), 254–260 (2007)CrossRefGoogle Scholar
  8. Khondaker A.N. et al.: Tidal effects on transport of contaminants in a coastal shallow aquifer. Arab. J. Sci. Eng. 22(1C), 65–80 (1997)Google Scholar
  9. Kim J.-H., Lee J., Cheong T.-J., Kim R.-H., Koh D.-C., Ryu J.-S., Chang H.-W.: Use of time series analysis for the identification of tidal effect on groundwater in the coastal area of Kimje, Korea. J. Hydrol. 300, 188–192 (2004)CrossRefGoogle Scholar
  10. Kohout F.A.: Cyclic flow of salt water in the Biscayne aquifer of southeastern Florida. J. Geophys. Res. 65, 2133–2141 (1960)CrossRefGoogle Scholar
  11. Mao X. et al.: Tidal influence on behaviour of a coastal aquifer adjacent to a low-relief estuary. J. Hydrol. 327(1–2), 110–127 (2006)CrossRefGoogle Scholar
  12. Moore W.S.: The subterranean estuary: a reaction zone of ground water and sea water. Mar. Chem. 65(1–2), 111–125 (1999)CrossRefGoogle Scholar
  13. Nielsen P.: Tidal dynamics of the water table in beaches. Water Resour. Res. 26(9), 2127–2134 (1990)Google Scholar
  14. Perrier F., Richon P., Sabroux J.-C.: Temporal variations of radon concentration in the saturated soil of Alpine grassland: the role of groundwater flow. Sci. Tot. Environ. 407(7), 2361–2371 (2009)CrossRefGoogle Scholar
  15. Raubenheimer B., Guza R.T., Elgar S.: Tidal water table fluctuations in a sandy ocean beach. Water Resour. Res. 35(8), 2313–2320 (1999)CrossRefGoogle Scholar
  16. Robinson C., Li L., Barry D.A.: Effect of tidal forcing on a subterranean estuary. Adv. Water Resour. 30(4), 851–865 (2007)CrossRefGoogle Scholar
  17. Rotzoll K., El-Kadi A.I.: Estimating hydraulic properties of coastal aquifers using wave setup. J. Hydrol. 353(1–2), 201–213 (2008)CrossRefGoogle Scholar
  18. Sun H.B.: A two-dimensional analytical solution of groundwater response to tidal loading in an estuary. Water Resour. Res. 33(6), 1429–1435 (1997)CrossRefGoogle Scholar
  19. Taniguchi M.: Tidal effects on submarine groundwater discharge into the ocean. Geophys. Res. Lett. 29(12), 3 (2002)CrossRefGoogle Scholar
  20. Underwood M.R., Peterson F.L., Voss C.I.: Groundwater lens dynamics of Atoll Islands. Water Resour. Res. 28(11), 2889–2902 (1992)CrossRefGoogle Scholar
  21. Urish D.W., McKenna T.E.: Tidal effects on groundwater discharge through a sandy marine beach. Ground Water 42(7), 971–982 (2004)CrossRefGoogle Scholar
  22. Ursino, N., Silvestri, S., Marani, M.: Subsurface flow and vegetation patterns in tidal environments. Water Resour. Res. 40(5) (2004). doi: 10.1029/2003WR002702
  23. Von Asmuth J.R., Knotters M.: Characterising groundwater dynamics based on a system identification approach. J. Hydrol. 296(1-4), 118–134 (2004)CrossRefGoogle Scholar
  24. Wilson, A.M., Gardner, L.R.: Tidally driven groundwater flow and solute exchange in a marsh: numerical simulations. Water Resour. Res. 42(1) (2006). doi: 10.1029/2005WR004302
  25. Yim C.S., Mohsen M.F.N.: Simulation of tidal effects on contaminant transport in porous media. Ground Water 30(1), 76–86 (1992)CrossRefGoogle Scholar
  26. Zawadzki W., Chorley D.W., Patrick G.: Capture-zone design in an aquifer influenced by cyclic fluctuations in hydraulic gradients. Hydrogeol. J. 10(6), 601–609 (2002)CrossRefGoogle Scholar
  27. Zhang Q., Volker R.E., Lockington D.A.: Experimental investigation of contaminant transport in coastal groundwater. Adv. Environ. Res. 6, 229–237 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.HydroGeoLogic, IncRestonUSA
  2. 2.School of EngineeringThe University of VermontBurlingtonUSA

Personalised recommendations