Advertisement

Transport in Porous Media

, Volume 89, Issue 2, pp 251–263 | Cite as

A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media

  • Jianchao Cai
  • Boming Yu
Article

Abstract

In the past decades, there was considerable controversy over the Lucas–Washburn (LW) equation widely applied in capillary imbibition kinetics. Many experimental results showed that the time exponent of the LW equation is less than 0.5. Based on the tortuous capillary model and fractal geometry, the effect of tortuosity on the capillary imbibition in wetting porous media is discussed in this article. The average height growth of wetting liquid in porous media driven by capillary force following the \({\overline L _{\rm {s}}(t)\sim t^{1/{2D_{\rm {T}}}}}\) law is obtained (here D T is the fractal dimension for tortuosity, which represents the heterogeneity of flow in porous media). The LW law turns out to be the special case when the straight capillary tube (D T = 1) is assumed. The predictions by the present model for the time exponent for capillary imbibition in porous media are compared with available experimental data, and the present model can reproduce approximately the global trend of variation of the time exponent with porosity changing.

Keywords

Capillary imbibition Fractal Porous media Time exponent 

List of symbols

A

Cross-sectional area (cm2)

Ap

Total pore cross-sectional area (cm2)

C1

Constant, as defined by Eq. 1

C2

Water absorption coefficient

d

Euclidean dimension

D

Fractal dimension

Df

Pore fractal dimension

DT

Tortuosity fractal dimension

K

Effective permeability (Darcy)

k

Time exponent

Lf

Actual length that the flow travels (cm)

Ls

Straight-line length (cm)

M

Imbibed weight in porous media (g)

m

Imbibed weight in a single capillary (g)

Nwt

Imbibed volume in porous media

n

Pores/capillaries number

Pc

Capillary pressure (Pa)

\({\overline r }\)

Effective radius for pores (cm)

reff

Statistical effective radius (cm)

Swf

Water saturation behind imbibition front (fraction)

Swi

Initial water saturation (fraction)

t

Imbibition time (s)

Vb

Bulk volume

Vp

Pore volume

Greek letters

δ

Pore shape factor

σ

Surface tension (N/m)

μ

Viscosity (Pa s)

\({\varepsilon }\)

Measuring unit

λ

Pore diameter (cm)

\({\phi _2}\)

Areal porosity

\({\phi _3}\)

Volume porosity

Ω

Integrating region ranging the minimum to the maximum capillaries

θ

Contact angle

ρ

Liquid density (g/cm3)

τ

Tortuosity

Sub-indexes

av

Average value

max

Maximum value

min

Minimum value

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balankin A.S., Paredes R.G., Susarrey O., Morales D., Vacio F.C.: Kinetic roughening and pinning of two coupled interfaces in disordered media. Phys. Rev. Lett. 96, 056101 (2006)CrossRefGoogle Scholar
  2. Balankin A.S., Susarrey O., Máquez Gonzáes J.: Scaling properties of pinned interfaces in fractal media. Phys. Rev. Lett. 90, 096101 (2003)CrossRefGoogle Scholar
  3. Barenblatt G.I., Entov V.M., Ryzhik V.M.: Theory of unsteady filtration of liquid and gases (in Russian). Nedra, Moscow (1972)Google Scholar
  4. Bear J.: Dynamics of fluids in porous media. Elsevier, New York (1972)Google Scholar
  5. Bell J.M., Cameron F.K.: The flow of liquids through capillary spaces. J. Phys. Chem. 10, 658–674 (1906)CrossRefGoogle Scholar
  6. Benavente D., Lock P., Ángeles García Del Cura M., Ordóñez S.: Predicting the capillary imbibition of porous rocks from microstructure. Transp. Porous Med. 49, 59–76 (2002)CrossRefGoogle Scholar
  7. Brú A., Pastor J.M.: Experimental characterization of hydration and pinning in bentonite clay, a swelling, heterogeneous, porous medium. Geoderma 134, 295–305 (2006)CrossRefGoogle Scholar
  8. Cai J.C., Yu B.M., Luo L., Mei M.F.: Capillary rise in a single tortuous capillary. Chin. Phys. Lett. 27, 054701 (2010a)CrossRefGoogle Scholar
  9. Cai J.C., Yu B.M., Zou M.Q., Luo L.: Fractal characterization of spontaneous co-current imbibition in porous media. Energy Fuels 24, 1860–1867 (2010b)CrossRefGoogle Scholar
  10. Comiti J., Renaud M.: A new model for determining mean structure parameters of fixed beds from pressure measurements: application to beds packed with parallelepipedal particles. Chem. Eng. Sci. 44, 1539–1545 (1989)CrossRefGoogle Scholar
  11. De Boer J.J.: The wettability of scoured and dried cotton fabrics. Textile Res. J. 50, 624–631 (1980)CrossRefGoogle Scholar
  12. Delker T., Pengra D.B., Wong P.-z.: Interface pinning and the dynamics of capillary rise in porous media. Phys. Rev. Lett. 76, 2902–2905 (1996)CrossRefGoogle Scholar
  13. Dicke M., Burrough P.A.: Using fractal dimensions for characterizing tortuosity of animal trails. Physiol. Entomol. 13, 393–398 (1988)CrossRefGoogle Scholar
  14. Doyen P.M.: Permeability, conductivity, and pore geometry of sandstone. J. Geophys. Res. 93, 7729–7740 (1988)CrossRefGoogle Scholar
  15. Dubé M., Rost M., Alava M.: Conserved dynamics and interface roughening in spontaneous imbibition: A critical overview. Eur. Phys. J. B 15, 691–699 (2000)CrossRefGoogle Scholar
  16. Dubé M., Rost M., Elder K.R., Alava M., Majaniemi S., Ala-Nissila T.: Liquid conservation and nonlocal interface dynamics in imbibition. Phys. Rev. Lett. 83, 1628–1631 (1999)CrossRefGoogle Scholar
  17. Dullien F.A.L.: Porous media: fluid transport and pore structure. Academic Press, San Diego (1992)Google Scholar
  18. Eklund D.E., Salminen P.J.: Water transport in the blade coating process. Tappi J. 69, 116–119 (1986)Google Scholar
  19. Family F., Chan K.C.B., Amar J.G.: Surface disordering: growth, roughening and phase transitions. Nova Science, New York (1992)Google Scholar
  20. Fries N., Dreyer M.: An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci. 320, 259–263 (2008)CrossRefGoogle Scholar
  21. Hammecker C., Barbiéro L., Boivin P., Maeght J.L., Diaw E.H.B.: A geometrical pore model for estimating the microscopical pore geometry of soil with infiltration measurements. Transp. Porous Med. 54, 193–219 (2004)CrossRefGoogle Scholar
  22. Hammecker C., Mertz J.-D., Fischer C., Jeannette D.: A geometrical model for numerical simulation of capillary imbibition in sedimentary rocks. Transp. Porous Med. 12, 125–141 (1993)CrossRefGoogle Scholar
  23. Handy L.L.: Determination of effective capillary pressures for porous media from imbibition data. Pet. Trans. AIME 219, 75–80 (1960)Google Scholar
  24. Horváh V.K., Stanley H.E.: Temporal scaling of interfaces propagating in porous media. Phys. Rev. E 52, 5166–5169 (1995)CrossRefGoogle Scholar
  25. Huber P., Grüner S., Schäfer C., Knorr K., Kityk A.V.: Rheology of liquids in nanopores: a study on the capillary rise of water, n-Hexadecane and n-Tetracosane in mesoporous silica. Eur. Phys. J. Spec. Top. 141, 101–105 (2007)CrossRefGoogle Scholar
  26. Karoglou M., Moropoulou A., Giakoumaki A., Krokida M.K.: Capillary rise kinetics of some building materials. J. Colloid Interface Sci. 284, 260–264 (2005)CrossRefGoogle Scholar
  27. Katz , A.J. , Thompson A.H.: Fractal sandstone pores: implications for conductivity and formation. Phys. Rev. Lett. 54, 1325–1328 (1985)CrossRefGoogle Scholar
  28. Kopelman R., Parus S., Prasad J.: Fractal-Like exciton kinetics in porous glasses, organic membranes, and filter papers. Phys. Rev. Lett. 56, 1742–1745 (1986)CrossRefGoogle Scholar
  29. Koponen A., Kataja M., Timonen J.: Permeability and effective porosity of porous media. Phys. Rev. E 56, 3319–3325 (1997)CrossRefGoogle Scholar
  30. Kwon T.H., Hopkins A.E., O’Donnell S.E.: Dynamic scaling behavior of a growing self-affine fractal interface in a paper-towel-wetting experiment. Phys. Rev. E 54, 685–690 (1996)CrossRefGoogle Scholar
  31. Lam C.H., Lam C.H., Lam C.H.: Pipe network model for scaling of dynamic interfaces in porous media. Phys. Rev. Lett. 85, 1238–1241 (2000)CrossRefGoogle Scholar
  32. Laughlin R.D., Davis J.E.: Some aspects of capillary absorption in fibrous textile wicking. Textile Res. J. 31, 904–910 (1961)CrossRefGoogle Scholar
  33. Leventis A., Verganelakis D.A., Halse M.R., Webber J.B., Strange J.H.: Capillary imbibition and pore characterisation in eement pastes. Transp. Porous Med. 39, 143–157 (2000)CrossRefGoogle Scholar
  34. Li K.W.: Scaling of spontaneous imbibition data with wettability included. J. Contam. Hydrol. 89, 218–230 (2007)CrossRefGoogle Scholar
  35. Li K.W., Chow K., Horne N.: Influence of initial water saturation on recovery by spontaneous imbibition in Gas/Water/Rock systems and the calculation of relative permeability. SPE Res. Eval. Eng. 9, 295–301 (2006)Google Scholar
  36. Li K.W., Li K.W., Li K.W.: Characterization of spontaneous water imbibition into gas-saturated rocks. SPEJ 6, 375–384 (2001)Google Scholar
  37. Li K.W., Horne R.N.: An analytical scaling method for spontaneous imbibition in gas–water–rock systems. SPEJ 9, 322–329 (2004)CrossRefGoogle Scholar
  38. Lucas R.: Rate of capillary ascension of liquids. Kolloid-Zeitschrift 23, 15–22 (1918)CrossRefGoogle Scholar
  39. Lundblad A., Bergman B.: Determination of contact-angle in porous molten-carbonate fuel-cell Electrodes. J. Electrochem. Soc. 144, 984–987 (1997)CrossRefGoogle Scholar
  40. Ma S., Morrow N.R., Zhang X.: Generalized scaling of spontaneous imbibition data for strongly water-wet systems. In: Paper 95–138, presented at the 6th Petroleum Conference of the South Saskatchewan Section, the Petroleum Society of CIM, held in Regina, 16–18 Oct, 1995Google Scholar
  41. Majumdar A.: Role of fractal geometry in the study of thermal phenomena. Annu. Rev. Heat. Trans. 4, 51–110 (1992)Google Scholar
  42. Perfect E., Kay B.D.: Fractal theory applied to soil aggregation. Soil Sci. Soc. Am. J. 55, 1552–1558 (1991)CrossRefGoogle Scholar
  43. Shou D.H., Fan J.T., Ding F.: A difference-fractal model for the permeability of fibrous porous media. Phys. Lett. A. 374, 1201–1204 (2010)CrossRefGoogle Scholar
  44. Washburn E.W.: Dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921)CrossRefGoogle Scholar
  45. Wheatcraft S.W., Tyler S.W.: An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res. 24, 566–578 (1988)CrossRefGoogle Scholar
  46. XiaoB.Q. Gao S.H., Chen L.X.: A fractal model for nucleate pool boiling of nanofluids at high heat flux including CHF. Fractals 18, 409–415 (2010a)CrossRefGoogle Scholar
  47. Xiao B.Q., Jiang G.P., Chen L.X.: A fractal study for nucleate pool boiling heat transfer of nanofluids. Sci. China Phys. Mech. Astron. 53, 30–37 (2010b)CrossRefGoogle Scholar
  48. Xu P., Yu B.M.: Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 31, 74–81 (2008)CrossRefGoogle Scholar
  49. Yu B.M.: Fractal character for tortuous streamtubes in porous media. Chin. Phys. Lett. 22, 158–160 (2005)CrossRefGoogle Scholar
  50. Yu B.M.: Analysis of flow in fractal porous media. Appl. Mech. Rev. 61, 050801 (2008)CrossRefGoogle Scholar
  51. Yu B.M., Cai J.C., Zou M.Q.: On the physical properties of apparent two-phase fractal porous media. Vadose Zone J. 8, 177–186 (2009)CrossRefGoogle Scholar
  52. Yu B.M., Cheng P.: A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Trans. 45, 2983–2993 (2002)CrossRefGoogle Scholar
  53. Yu B.M., Lee L.J., Cao H.Q.: A fractal in-plane permeability model for fabrics. Polym. Compos. 22, 201–221 (2002)CrossRefGoogle Scholar
  54. Yu B.M., Li J.H.: Some fractal characters of porous media. Fractals 9, 365–372 (2001)CrossRefGoogle Scholar
  55. Yu B.M., Li J.H.: A geometry model for tortuosity of flow path in porous media. Chin. Phys. Lett. 21, 1569–1571 (2004)CrossRefGoogle Scholar
  56. Yun M.J., Yu B.M., Cai J.C.: Analysis of seepage characters in fractal porous media. Int. J. Heat Mass Trans. 52, 3272–3278 (2009)CrossRefGoogle Scholar
  57. Zhao, H.Y., Li, K.W.: A fractal model of production by spontaneous water imbibition. In: SPE119525, presented at the Latin American and Caribbean Petroleum Engineering Conference held in Cartagena, 31 May– 3 June, 2009Google Scholar
  58. Zhou L., Selim H.M.: A conceptual fractal model for describing time-dependent dspersivity. Soil Sci. 167, 173–183 (2002)CrossRefGoogle Scholar
  59. Zhuang Q., Harlock S.C., Brook D.B.: Longitudinal wicking of weft knitted fabrics: part II: wicking mechanism of knitted fabrics used in undergarments for outdoor activities. J. Textile Inst. 93, 97–107 (2002)CrossRefGoogle Scholar
  60. Zimmerman R.W., Bodvarsson G.S.: A simple approximate solution for horizontal infiltration in a Brooks–Corey medium. Transp. Porous Med. 6, 195–205 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Geophysics and GeomaticsChina University of GeosciencesWuhanP. R. China
  2. 2.School of PhysicsHuazhong University of Science and TechnologyWuhanP. R. China

Personalised recommendations