Modeling Unsaturated Flow in Absorbent Swelling Porous Media: Part 2. Numerical Simulation

Abstract

For solving flow, absorption and deformation processes in porous media containing absorbent gelling materials a finite element method is developed and applied. Adaptive techniques are preferred where spatial, temporal, and residual errors are controlled. Mesh-movement and mesh-refinement strategies are incorporated. Spline approximations are used for better and more flexible descriptions of experimental data and measured relations. Applied to hysteretic material behavior an extended method is described. Comparisons to analytical results and experimental findings are given. A basic sensitivity analysis of two selected key parameters is presented. Practical applications refer to diaper-core flow simulations.

This is a preview of subscription content, access via your institution.

Abbreviations

A :

Saturation difference in drying curves (1)

a :

Solid displacement direction vector (1)

a i :

Direction vector at node i (1)

B :

Saturation difference in wetting curves (1)

b :

Generalized sink/source vector

b :

Height (L)

C :

Solution vector of concentration (ML −3)

C :

Intrinsic concentration (ML −3)

\({\bar C}\) :

Bulk concentration (ML −3)

c :

Scaling factor (1)

d :

Error vector

d :

Volumetric solid strain (1)

E :

Error vector

e :

Gravitational unit vector (1)

f :

Generalized flux vector

h :

 = z + ψ, Hydraulic head of liquid (L)

K :

Hydraulic conductivity tensor (LT −1)

K :

Scalar hydraulic conductivity (LT −1)

k r :

Relative permeability (1)

J s :

Jacobian of solid domain, volume dilatation function (1)

L :

Partial differential equation operator

l :

Characteristic element length (L)

m :

Generalized storage vector

\({m_2^s}\) :

AGM x-load (1)

\({m_{2\max}^s}\) :

Maximum AGM x-load (1)

N :

Base sample size

n :

Outward pointing unit normal vector (1)

n :

VG pore size distribution index (1)

p :

Parameter vector

Q :

Volumetric flow rate (\({L^3T^{-1}}\))

q n :

Normal flux (LT −1)

R :

Residual vector (\({L^3T^{-1}}\))

R c :

Kinetic reaction term for immobile liquid (\({ML^{-3}T^{-1}}\))

R ψ :

Kinetic reaction term for mobile liquid (T −1)

S :

Solution vector of saturation (1)

S i :

Sensitivity index of parameter i (1)

s :

Saturation (1)

T :

Pulse-infiltration period (T)

t :

Time (T)

U :

Solution vector of solid displacement (L)

u :

Scalar solid displacement norm (L)

w :

Width (L)

x :

Spatial coordinate vector (L)

z :

Vertical coordinate (L)

α :

VG curve fitting parameter (L −1)

β upwind :

Numerical dispersivity (L)

Γ :

Closed boundary (L 2)

γ :

Specific liquid compressibility (L −1)

Δ:

Increment or difference

δ :

Temporal error tolerance (1)

ε :

Porosity, void space (1)

η :

Residual error tolerance (\({L^3T^{-1}}\))

κ :

Artificial compression of solid (L −1 T)

ξ :

Mesh refinement error criterion (1)

\({\sigma^{\circ}}\) :

Artificial (dampening) ‘diffusive’ stress of solid (L)

τ :

AGM reaction (speed) rate constant (T −1)

ϕ :

State variable vector

Ψ :

Solution vector of pressure head (L)

ψ :

Pressure head of liquid (L)

Ω :

Domain (L 3)

∇:

Nabla (vector) operator (= grad) (L −1)

AGM:

AGM

AGM0 :

AGM at initial time

c :

Continuous

D :

Dirichlet-type BC

d :

Drying

e :

Effective

H2O:

Water

i, j:

Nodal or parameter index

L :

Left

max:

Maximum

min:

Minimum

N :

Number of nodes

N :

Neumann-type BC

n :

Time plane

0:

Initial

R :

Right

rev:

Reversal

w :

Wetting

c :

Convective

D :

Number of space dimension

d :

Diffusive

L :

Left

P :

Predictor

R :

Right

s :

Solid phase

T :

Transpose

τ:

Iteration counter

AGM:

Absorbent gelling material

AMR:

Adaptive mesh refinement

BC:

Boundary condition

IC:

Initial condition

IFM:

Interface manager

RHS:

Right-hand side

RMS:

Root-mean square

SIA:

Sequential iterative approach

VG:

van Genuchten

2D:

Two dimensions or two-dimensional

3D:

Three dimensions or three-dimensional

\({()\cdot()}\) :

Vector dot (scalar) product

\({()\otimes()}\) :

Tensor (dyadic) product

\({\dot{()}}\) :

Differentiation with respect to time t

\({\tilde{()}}\) :

Approximate solution

References

  1. Bitterlich S., Durner W., Iden S.C., Knabner P.: Inverse estimation of the unsaturated soil hydraulic properties from column outflow experiments using free-form parameterizations. Vadose Zone J. 3, 971–981 (2004)

    Google Scholar 

  2. Celia M.A., Bouloutas E.T., Zarba R.L.: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26(7), 1483–1496 (1990)

    Article  Google Scholar 

  3. De Boor C.: A Practical Guide to Splines. Springer, New York (2001)

    Google Scholar 

  4. DHI-WASY: FEFLOW finite element subsurface flow and transport simulation system—users manual/reference manual/white papers. recent release 6.0. Technical report, DHI-WASY GmbH, Berlin, (2010). URL http://www.feflow.info.

  5. Diersch H.-J.G., Kolditz O.: Variable-density flow and transport in porous media: approaches and challenges. Adv. Water Resour. 25, 899–944 (2002)

    Article  Google Scholar 

  6. Diersch H.-J.G., Perrochet P.: On the primary variable switching technique for simulating unsaturated-saturated flows. Adv. Water Resour. 23, 271–301 (1999)

    Article  Google Scholar 

  7. Diersch H.-J.G., Clausnitzer V., Myrnyy V., Rosati R., Schmidt M., Beruda H., Ehrnsperger B.J., Virgilio R.: Modeling unsaturated flow in absorbent porous media: 1. theory. Transp. Porous Media 83(3), 437–464 (2010)

    Article  Google Scholar 

  8. Fritsch F.N., Carlson R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Article  Google Scholar 

  9. Kastanek F.J., Nielsen D.R.: Description of soil water characteristics using cubic spline interpolation. Soil Sci. Soc. Am. J. 65, 279–283 (2001)

    Article  Google Scholar 

  10. Prunty L., Casey F.X.M.: Soil water retention curve description using a flexible smooth function. Vadose Zone J. 1, 179–185 (2002)

    Google Scholar 

  11. Saltelli A.: Global Sensitivity Analysis: The Primer. Wiley, Chichester (2008)

    Google Scholar 

  12. Scott, P.S., Farquhar, G.J., Kouwen, N.: Hysteretic effects on net infiltration. In: Advances in Infiltration, pp. 163–170. American Society of Agricultural Engineers, St Joseph (1983)

  13. Wesseling J.G., Ritsema C.J., Stolte J., Oostindie K., Dekker L.W.: Describing the soil physical characteristics of soil samples with cubical splines. Transp. Porous Media 71(3), 289–309 (2008)

    Article  Google Scholar 

  14. Zienkiewicz O.C., Taylor R.L.: The Finite Element Method, 5 edn. Elsevier Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  15. Zienkiewicz O.C., Zhu J.Z.: The superconvergent patch recovery and a-posteriori error estimates. Part 1: The recovery technique. Part 2: Error estimates and adaptivity. Int. J. Numer. Methods Eng. 33, 1331–1382 (1992)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hans-Jörg G. Diersch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diersch, HJ.G., Clausnitzer, V., Myrnyy, V. et al. Modeling Unsaturated Flow in Absorbent Swelling Porous Media: Part 2. Numerical Simulation. Transp Porous Med 86, 753–776 (2011). https://doi.org/10.1007/s11242-010-9650-4

Download citation

Keywords

  • Unsaturated flow
  • Absorbent gelling material
  • Swelling porous media
  • Finite element analysis
  • Diaper flow modeling