Advertisement

Transport in Porous Media

, Volume 86, Issue 3, pp 753–776 | Cite as

Modeling Unsaturated Flow in Absorbent Swelling Porous Media: Part 2. Numerical Simulation

  • Hans-Jörg G. Diersch
  • Volker Clausnitzer
  • Volodymyr Myrnyy
  • Rodrigo Rosati
  • Mattias Schmidt
  • Holger Beruda
  • Bruno J. Ehrnsperger
  • Raffaele Virgilio
Article

Abstract

For solving flow, absorption and deformation processes in porous media containing absorbent gelling materials a finite element method is developed and applied. Adaptive techniques are preferred where spatial, temporal, and residual errors are controlled. Mesh-movement and mesh-refinement strategies are incorporated. Spline approximations are used for better and more flexible descriptions of experimental data and measured relations. Applied to hysteretic material behavior an extended method is described. Comparisons to analytical results and experimental findings are given. A basic sensitivity analysis of two selected key parameters is presented. Practical applications refer to diaper-core flow simulations.

Keywords

Unsaturated flow Absorbent gelling material Swelling porous media Finite element analysis Diaper flow modeling 

List of Symbols

Roman Letters

A

Saturation difference in drying curves (1)

a

Solid displacement direction vector (1)

ai

Direction vector at node i (1)

B

Saturation difference in wetting curves (1)

b

Generalized sink/source vector

b

Height (L)

C

Solution vector of concentration (ML −3)

C

Intrinsic concentration (ML −3)

\({\bar C}\)

Bulk concentration (ML −3)

c

Scaling factor (1)

d

Error vector

d

Volumetric solid strain (1)

E

Error vector

e

Gravitational unit vector (1)

f

Generalized flux vector

h

 = z + ψ, Hydraulic head of liquid (L)

K

Hydraulic conductivity tensor (LT −1)

K

Scalar hydraulic conductivity (LT −1)

kr

Relative permeability (1)

Js

Jacobian of solid domain, volume dilatation function (1)

L

Partial differential equation operator

l

Characteristic element length (L)

m

Generalized storage vector

\({m_2^s}\)

AGM x-load (1)

\({m_{2\max}^s}\)

Maximum AGM x-load (1)

N

Base sample size

n

Outward pointing unit normal vector (1)

n

VG pore size distribution index (1)

p

Parameter vector

Q

Volumetric flow rate (\({L^3T^{-1}}\))

qn

Normal flux (LT −1)

R

Residual vector (\({L^3T^{-1}}\))

Rc

Kinetic reaction term for immobile liquid (\({ML^{-3}T^{-1}}\))

Rψ

Kinetic reaction term for mobile liquid (T −1)

S

Solution vector of saturation (1)

Si

Sensitivity index of parameter i (1)

s

Saturation (1)

T

Pulse-infiltration period (T)

t

Time (T)

U

Solution vector of solid displacement (L)

u

Scalar solid displacement norm (L)

w

Width (L)

x

Spatial coordinate vector (L)

z

Vertical coordinate (L)

Greek Letters

α

VG curve fitting parameter (L −1)

βupwind

Numerical dispersivity (L)

Γ

Closed boundary (L 2)

γ

Specific liquid compressibility (L −1)

Δ

Increment or difference

δ

Temporal error tolerance (1)

ε

Porosity, void space (1)

η

Residual error tolerance (\({L^3T^{-1}}\))

κ

Artificial compression of solid (L −1 T)

ξ

Mesh refinement error criterion (1)

\({\sigma^{\circ}}\)

Artificial (dampening) ‘diffusive’ stress of solid (L)

τ

AGM reaction (speed) rate constant (T −1)

ϕ

State variable vector

Ψ

Solution vector of pressure head (L)

ψ

Pressure head of liquid (L)

Ω

Domain (L 3)

Nabla (vector) operator (= grad) (L −1)

Subscripts

AGM

AGM

AGM0

AGM at initial time

c

Continuous

D

Dirichlet-type BC

d

Drying

e

Effective

H2O

Water

i, j

Nodal or parameter index

L

Left

max

Maximum

min

Minimum

N

Number of nodes

N

Neumann-type BC

n

Time plane

0

Initial

R

Right

rev

Reversal

w

Wetting

Superscripts

c

Convective

D

Number of space dimension

d

Diffusive

L

Left

P

Predictor

R

Right

s

Solid phase

T

Transpose

τ

Iteration counter

Abbreviations

AGM

Absorbent gelling material

AMR

Adaptive mesh refinement

BC

Boundary condition

IC

Initial condition

IFM

Interface manager

RHS

Right-hand side

RMS

Root-mean square

SIA

Sequential iterative approach

VG

van Genuchten

2D

Two dimensions or two-dimensional

3D

Three dimensions or three-dimensional

\({()\cdot()}\)

Vector dot (scalar) product

\({()\otimes()}\)

Tensor (dyadic) product

\({\dot{()}}\)

Differentiation with respect to time t

\({\tilde{()}}\)

Approximate solution

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bitterlich S., Durner W., Iden S.C., Knabner P.: Inverse estimation of the unsaturated soil hydraulic properties from column outflow experiments using free-form parameterizations. Vadose Zone J. 3, 971–981 (2004)Google Scholar
  2. Celia M.A., Bouloutas E.T., Zarba R.L.: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26(7), 1483–1496 (1990)CrossRefGoogle Scholar
  3. De Boor C.: A Practical Guide to Splines. Springer, New York (2001)Google Scholar
  4. DHI-WASY: FEFLOW finite element subsurface flow and transport simulation system—users manual/reference manual/white papers. recent release 6.0. Technical report, DHI-WASY GmbH, Berlin, (2010). URL http://www.feflow.info.
  5. Diersch H.-J.G., Kolditz O.: Variable-density flow and transport in porous media: approaches and challenges. Adv. Water Resour. 25, 899–944 (2002)CrossRefGoogle Scholar
  6. Diersch H.-J.G., Perrochet P.: On the primary variable switching technique for simulating unsaturated-saturated flows. Adv. Water Resour. 23, 271–301 (1999)CrossRefGoogle Scholar
  7. Diersch H.-J.G., Clausnitzer V., Myrnyy V., Rosati R., Schmidt M., Beruda H., Ehrnsperger B.J., Virgilio R.: Modeling unsaturated flow in absorbent porous media: 1. theory. Transp. Porous Media 83(3), 437–464 (2010)CrossRefGoogle Scholar
  8. Fritsch F.N., Carlson R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)CrossRefGoogle Scholar
  9. Kastanek F.J., Nielsen D.R.: Description of soil water characteristics using cubic spline interpolation. Soil Sci. Soc. Am. J. 65, 279–283 (2001)CrossRefGoogle Scholar
  10. Prunty L., Casey F.X.M.: Soil water retention curve description using a flexible smooth function. Vadose Zone J. 1, 179–185 (2002)Google Scholar
  11. Saltelli A.: Global Sensitivity Analysis: The Primer. Wiley, Chichester (2008)Google Scholar
  12. Scott, P.S., Farquhar, G.J., Kouwen, N.: Hysteretic effects on net infiltration. In: Advances in Infiltration, pp. 163–170. American Society of Agricultural Engineers, St Joseph (1983)Google Scholar
  13. Wesseling J.G., Ritsema C.J., Stolte J., Oostindie K., Dekker L.W.: Describing the soil physical characteristics of soil samples with cubical splines. Transp. Porous Media 71(3), 289–309 (2008)CrossRefGoogle Scholar
  14. Zienkiewicz O.C., Taylor R.L.: The Finite Element Method, 5 edn. Elsevier Butterworth-Heinemann, Oxford (2000)Google Scholar
  15. Zienkiewicz O.C., Zhu J.Z.: The superconvergent patch recovery and a-posteriori error estimates. Part 1: The recovery technique. Part 2: Error estimates and adaptivity. Int. J. Numer. Methods Eng. 33, 1331–1382 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hans-Jörg G. Diersch
    • 1
  • Volker Clausnitzer
    • 1
  • Volodymyr Myrnyy
    • 1
  • Rodrigo Rosati
    • 2
  • Mattias Schmidt
    • 2
  • Holger Beruda
    • 2
  • Bruno J. Ehrnsperger
    • 2
  • Raffaele Virgilio
    • 3
  1. 1.DHI-Wasy GmbHBerlinGermany
  2. 2.Procter&Gamble Service GmbHSchwalbach am TaunusGermany
  3. 3.Procter&Gamble Services Company SAStrombeek-BeverBelgium

Personalised recommendations