Skip to main content
Log in

Determining Spatial Distributions of Permeability

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Conventional laboratory experimentation provides an apparent value of hydraulic permeability which, at best, is representative of the entire sample. Nuclear magnetic resonance imaging (MRI) provides unique opportunities to probe spatial distributions of permeability at a much finer scale (Seto et al., Transp Porous Media 42:351–388, 2001). We advance the methodology for determining spatial distributions of permeability and provide, for the first time, laboratory determinations of permeability distributions with complete three-dimensional (3D) spatial resolution. We investigate new experimental designs that mitigate a possible lack of identifiability and provide for more accurate estimates of permeability. We demonstrate the application of MRI experiments and analyses that provide substantial improvements in the determination of the porosity distribution, an essential step for obtaining reliable measurements of spatially resolved velocity distributions. We investigate the use of global optimization to solve the associated inverse problem for determining permeability distributions from the measured velocity distributions. Our methodology is demonstrated with experimental data on sandstone and trabecular bone samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A c :

Cross-sectional area

\({B_i^m}\) :

ith B-spline basis function with the order of m

c :

B-spline coefficient

c :

Column vector of B-spline coefficients

F :

Velocity values calculated from mathematical model

G :

Gram matrix

g :

Gravity

H :

Matrix composed of Gram matrix elements consisting regularization term

J :

Performance index

K :

Permeability tensor

k(z):

Permeability at position z

k app :

Apparent permeability

k :

Wave vector for spin position

L :

Length of sample

N id :

Dimension of the spline in z id direction

N v :

Number of imaging voxels

n :

Normal vector

P :

Normalized displacement distribution function

p :

Pressure

Q :

Volumetric flow rate

q :

Wave vector for spin displacement

S :

NMR signal intensity

t :

Time

U :

Uniform random number

V :

Volume of the sample

v app :

Apparent velocity

v :

Darcy velocity

W :

Weighting matrix

x :

Extended partition of B-spline basis function

Y :

Velocity values measured by experiments

Z :

Position displacement

z :

Position vector

s :

Position vector

\({\fancyscript{T}}\) :

“Temperature” parameter for simulated annealing algorithm

z id :

Position parallel to the dimension id

Γ:

Index representing a set of flow experiments

Δ :

Observation time

δ :

Pulse width of pulsed-gradient-field

λ :

Regularization parameter

μ :

Viscosity

ρ :

Bulk fluid density

ζ:

Joint displacement density (or velocity) function

\({\phi}\) :

Porosity

References

  • Auzerais F.M., Dunsmuir J., Ferreol B.B., Martys N., Olson J., Ramakrishnan T.S., Rothman D.H., Schwartz L.M.: Transport in sandstone: a study based on three dimensional microtomography. Geophys. Res. Lett. 23, 705–708 (1996)

    Article  Google Scholar 

  • Brooks S.P., Morgan B.J.T.: Optimization using simulated annealing. Statistician 44, 241–257 (1995)

    Article  Google Scholar 

  • Callaghan P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press, New York (1991)

    Google Scholar 

  • Chang C.T.P., Watson A.T.: NMR imaging of flow velocity in porous media. AIChE J. 45, 437–444 (1999)

    Article  Google Scholar 

  • Chang C.P., Watson A., Edwards C.: NMR imaging of fluids and flow in porous media. Exp. Methods Phys. Sci. 35, 387–423 (1999)

    Article  Google Scholar 

  • Chen W.H., Galavas G.R., Seinfeld J.H., Wasserman M.L.: A new algorithm for automatic history matching. Soc. Petrol. Eng. J. 14, 593–608 (1974)

    Google Scholar 

  • Chen S., Qin F., Watson A.T.: Determining fluid saturations during multiphase flow experiments by NMR imaging techniques. AIChE J. 40, 1238–1245 (1994)

    Article  Google Scholar 

  • Collins R.E.: Flow of Fluids Through Porous Materials. Petroleum Publishing Co., Tulsa (1976)

    Google Scholar 

  • Geyer C.J., Thompson E.A.: Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Am. Stat. Assoc. 90, 909–920 (1995)

    Article  Google Scholar 

  • Howes F.A., Whitaker S.: The spatial averaging theorem revisited. Chem. Eng. Sci. 40, 1387–1392 (1985)

    Article  Google Scholar 

  • Johnston P.R., Gulrajani R.M.: Selecting the corner in the L-curve approach to Tikhonov regularization. IEEE Trans. Biomed. Eng. 47, 1293–1296 (2000)

    Article  Google Scholar 

  • Kenyon W.E.: Nuclear magnetic resonance as a petrophysical measurement. Nucl. Geophys. 6, 153–171 (1992)

    Google Scholar 

  • Kenyon W.E., Day P.I., Straley C., Willemsen J.F.: A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones. SPE Form. Eval. 3, 622–636 (1988)

    Google Scholar 

  • Kilmer M.E., O’Leary D.P.: Choosing regularization parameters in iterative methods for ill-posed problems. SIAM J. Matrix Anal. Appl. 22, 1204–1221 (2001)

    Article  Google Scholar 

  • Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  Google Scholar 

  • Kulkarni R.N., Watson A.T.: A robust technique for quantification of NMR imaging data. AIChE J. 43, 2137–2140 (1997)

    Article  Google Scholar 

  • Kulkarni R., Watson A., Nordtvedt J.E., Sylte A.: Two-phase flow in porous media: property identification and model validation. AIChE J. 44, 2337–2350 (1998)

    Article  Google Scholar 

  • Liaw H.K., Kulkarni R.N., Chen S., Watson A.T.: Characterization of fluid distributions in porous media by NMR techniques. AIChE J. 42, 538–546 (1996)

    Article  Google Scholar 

  • Makrodimitris K., Papadopoulos G.K., Philippopoulos C., Theodoroua D.N.: Parallel tempering method for reconstructing isotropic and anisotropic porous media. J. Chem. Phys. 117, 5876–5884 (2002)

    Article  Google Scholar 

  • Mandava S.S., Watson A.T., Edwards C.M.: NMR imaging of saturation during immiscible displacements. AIChE J. 36, 1680–1686 (1990)

    Article  Google Scholar 

  • Metropolis N., Rosenbluthand A., Rosenbluth M., Teller A., Teller E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  • Reginska T.: A regularization parameter in discrete ill-posed problems. SIAM J. Sci. Comput. 17, 740–749 (1996)

    Article  Google Scholar 

  • Schumaker L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)

    Google Scholar 

  • Seto, K.: Miscible displacement simulation and permeability characterization in porous media. PhD thesis, Texas A&M University, College Station, TX (1999)

  • Seto K., Hollenshead J.T., Watson A.T., Chang C.T.P., Slattery J.C.: Determination permeability determinations using NMR velocity imaging. Transp. Porous Media 42, 351–388 (2001)

    Article  Google Scholar 

  • Slattery J.C.: Momentum, Energy, and Mass Transfer in Continua. Krieger, New York (1981)

    Google Scholar 

  • Slattery J.C.: Advanced Transport Phenomena. Cambridge University Press, New York (1998)

    Google Scholar 

  • Tchelepi H.A., Orr F.M. Jr, Rakotomalala N., Salin D., Wouméni R.: Dispersion, permeability heterogeneity, and viscous fingering: acoustic experimental observations and particle-tracking simulations. Phys. Fluids A 5, 1558–1574 (1993)

    Article  Google Scholar 

  • Tesi M.C., van Rensburg E.J.J., Orlandini E., Whittington S.G.: Monte carlo study of the interacting self-avoiding walk model in three dimensions. J. Stat. Phys. 82, 155–181 (1996)

    Article  Google Scholar 

  • Uh, J.: Nuclear magnetic resonance imaging and analysis for determination of porous media properties. PhD thesis, Texas A&M University, College Station, TX (2005)

  • Uh J., Watson A.T.: Nuclear magnetic resonance determination of surface relaxivity in permeable media. Ind. Eng. Chem. Res. 43, 3026–3032 (2004)

    Article  Google Scholar 

  • Wang X., Ni Q.: Determination of cortical bone porosity and pore size distribution using a low field pulse NMR approach. J. Orthop. Res. 21, 312–319 (2003)

    Article  Google Scholar 

  • Watson A.T., Gatens J.M. III, Lane H.S.: Model selection for well test and production data analysis. SPE Form. Eval. 3, 215–221 (1988)

    Google Scholar 

  • Watson A.T., Hollenshead J.T., Uh J., Chang C.T.P.: NMR determination of porous media property distributions. Annu. Rep. NMR Spectrosc. 48, 113–144 (2002)

    Article  Google Scholar 

  • Whitaker S.: Diffusion and dispersion in porous media. AIChE J. 13, 420–427 (1967)

    Article  Google Scholar 

  • Whitaker S.: Flow in porous media: a theoretical derivation of Darcy’s law. Transp. Porous Media 16, 3–25 (1986)

    Article  Google Scholar 

  • Withjack E.M.: Computed tomography for rock-property-determination and fluid-flow visualization. SPE Form. Eval. 3, 696–704 (1988)

    Google Scholar 

  • Yang P.H., Watson A.T.: Automatic history matching with variable metric methods. SPE Reserv. Eng. 3, 995–1001 (1988)

    Google Scholar 

  • Yang P.H., Watson A.T.: A Bayesian methodology for estimating relative permeability curves. SPE Reserv. Eng. 6, 259–265 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsoo Uh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uh, J., Watson, A.T. Determining Spatial Distributions of Permeability. Transp Porous Med 86, 385–414 (2011). https://doi.org/10.1007/s11242-010-9627-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9627-3

Keywords

Navigation