Skip to main content
Log in

Statistical Synthesis of Imaging and Porosimetry Data for the Characterization of Microstructure and Transport Properties of Sandstones

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The microstructure of a suite of sandstone samples is quantitatively analyzed using a method which combines information from thin section micrographs of the pore space with mercury injection porosimetry in a statistical framework. This method enables the determination of a continuous distribution of pore sizes ranging from few nanometre to several hundred micrometre. The data obtained unify fractal and Euclidean aspects of the void space geometry, yield estimates of the pore-to-throat aspect ratio and challenge the ability of commonly used network models to describe fluid percolation in multiscale porous media. Application of critical path analysis to the prediction of flow permeability and electrical conductivity of sandstone core samples using the new information produces results comparable to those obtained by the classical approach—a fact attributed to the presence of macroscopic heterogeneity at the scale of several millimetres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler P.M., Jacquin C.G., Quiblier J.A.: Flow in simulated porous media. Int. J. Multiph. Flow 16, 691 (1990)

    Article  Google Scholar 

  • Bakke S., Oren P.: 3D pore-scale modeling of sandstones and flow simulations in pore networks. SPE J. 2(2), 136–149 (1997)

    Google Scholar 

  • Bekri S., Howard J., Muller J., Adler P.M.: Electrical resistivity index in multiphase flow through porous media. Transp. Porous Med. 51, 41–65 (2003)

    Article  Google Scholar 

  • Blacher S., Heinrichs B., Sahouli B., Pirard R., Pirard J.-P.: Fractal characterization of wide pore range catalysts: Application to Pd–Ag/SiO2 xerogels. J. Colloid Interface Sci. 226, 123–130 (2000)

    Article  Google Scholar 

  • Blair S.C., Berge P.A., Berryman J.G.: Using two-point correlation functions to characterize microgeometry and estimate permeabilities of sandstones and porous glass. J. Geophys. Res. 101(B9), 20359–20375 (1996)

    Article  Google Scholar 

  • Broseta D., Barre L., Vizika O., Shahidzadeh N., Guilbaud J.P., Lyonnard S.: Capillary condensation in a fractal porous medium. Phys. Rev. Lett. 86, 5313–5316 (2001)

    Article  Google Scholar 

  • Chang D., Ioannidis M.A.: Magnetization evolution in network models of porous rock under conditions of drainage and imbibition. J. Colloid Interface Sci. 253, 159–170 (2002)

    Article  Google Scholar 

  • Chatzis I., Dullien F.A.L.: Modeling pore structure by 2D and 3D networks with application to sandstones. J. Can. Petrol. Technol. 16, 97–108 (1977)

    Google Scholar 

  • Chatzis I., Morrow N.R., Lim H.T.: Magnitude and detailed structure of residual oil saturation. SPE J. 23, 311–326 (1983)

    Google Scholar 

  • Chen Q., Gingras M.K., Balcom B.J.: A magnetic resonance study of pore filling processes during spontaneous imbibition in Berea sandstone. J. Chem. Phys. 119, 9609–9616 (2003)

    Article  Google Scholar 

  • Dong H., Blunt M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80, 036307 (2009)

    Article  Google Scholar 

  • Dullien F.A.L.: Porous Media: Fluid Transport and Pore Structure. Academic Press, San Diego (1992)

    Google Scholar 

  • Dunn K.J., Bergman D.J., LaTorraca G.A.: Nuclear magnetic resonance: petrophysical and logging applications. In: Helbig, K., Treitel, S. (eds) Handbook of Geophysical Exploration, vol. 32, Pergamon Press, Oxford (2002)

    Google Scholar 

  • Ehrburger-Dolle F., Lavanchy A., Stoeckli F.: Determination of the surface fractal dimension of active carbons by mercury porosimetry. J. Colloid Interface Sci. 166, 451–461 (1994)

    Article  Google Scholar 

  • Glatter O., Kratky O.: Small-Angle X-ray Scattering. Academic Press, London (1982)

    Google Scholar 

  • Han M., Youssef S., Rosenberg E., Fleury M., Levitz P.: Deviation from Archie’s law in partially saturated porous media: Wetting film versus disconnectedness of the conducting phase. Phys. Rev. E 79, 031127 (2009)

    Article  Google Scholar 

  • Hinde A.L.: PRINSAS—a Windows-based computer program for the processing and interpretation of small-angle scattering data tailored to the analysis of sedimentary rocks. J. Appl. Crystallogr. 37, 1020–1024 (2004)

    Article  Google Scholar 

  • Ioannidis M.A., Chatzis I.: Network modeling of pore structure and transport properties of porous media. Chem. Eng. Sci. 48, 951–972 (1993)

    Article  Google Scholar 

  • Ioannidis M.A., Chatzis I., Dullien F.A.L.: Macroscopic percolation model of immiscible displacement: effects of buoyancy and spatial structure. Water Resour. Res. 32, 3297–3310 (1996)

    Article  Google Scholar 

  • Ioannidis M.A., Chatzis I., Sudicky E.A.: The effect of spatial correlation on the accessibility characteristics of 3-dimensional cubic pore network as related to drainage displacements in porous media. Water Resour. Res. 29, 1777–1785 (1993)

    Article  Google Scholar 

  • Ioannidis M.A., Kwiecien M.J., Chatzis I.: Statistical analysis of the porous microstructure as a method for estimating reservoir permeability. J. Petrol. Sci. Eng. 16, 251–261 (1996)

    Article  Google Scholar 

  • Ioannidis, M.A., Kwiecien, M.J., Chatzis, I., Macdonald, I.F., Dullien, F.A.L.: Comprehensive pore structure characterization using 3D computer reconstruction and stochastic modeling. SPE Preprint 38713, presented at the 1997 SPE annual technical conference and exhibition. San Antonio, Texas (1997)

  • Katz A.J., Thompson A.H.: Fractal sandstone pores: implications for conductivity and pore formation. Phys. Rev. Lett. 54, 1325–1328 (1985)

    Article  Google Scholar 

  • Katz A.J., Thompson A.H.: Quantitative prediction of permeability in porous rock. Phys. Rev. B 34, 8179–8181 (1986)

    Article  Google Scholar 

  • Katz A.J., Thompson A.H.: Prediction of rock electrical conductivity from mercury injection measurements. J. Geophys. Res.–Solid Earth and Planets 92(B1), 599–607 (1987)

    Article  Google Scholar 

  • Larson R.G., Morrow N.R.: Effects of sample size on capillary pressures in porous media. Powder Technol. 30, 123–138 (1981)

    Article  Google Scholar 

  • Liang Z., Ioannidis M.A., Chatzis I.: Permeability and electrical conductivity of porous media from 3D stochastic replicas of the microstructure. Chem. Eng. Sci. 55, 5247–5262 (2000)

    Article  Google Scholar 

  • Lindquist W.B., Venkatarangan A., Dunsmuir J., Wong T.F.: Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res.–Solid Earth 105(B9), 21509–21527 (2000)

    Article  Google Scholar 

  • Lock P.A., Jing X.-D., Zimmerman R.W., Schlueter E.M.: Predicting the permeability of sandstone from image analysis of pore structure. J. Appl. Phys. 92, 6311–6319 (2002)

    Article  Google Scholar 

  • Meng B.: Resolution-dependent characterization of interconnected pore systems: development and suitability of a new method. Mater. Struct. 27, 63–70 (1994)

    Article  Google Scholar 

  • Padhy G.S., Lemaire C., Amirtharaj E.S., Ioannidis M.A.: Pore size distribution in mulitscale porous media as revealed by DDIF-NMR, mercury porosimetry and statistical image analysis. Colloids Surf. A–Physicochemical and Engineering Aspects 300, 222–234 (2007)

    Article  Google Scholar 

  • Pfeifer P., Avnir D.: Chemistry in non-integer dimensions between two and three. 1. Fractal theory of heterogeneous surfaces. J. Chem. Phys. 79, 3558–3565 (1983)

    Article  Google Scholar 

  • Pomerantz A.E., Tilke P., Song Y.-Q.: Inverting MRI measurements to heterogeneity spectra. J. Magn. Reson. 193, 243–250 (2008)

    Article  Google Scholar 

  • Radlinski A.P., Radlinska E.Z., Agamalian M., Wignall G.D., Lindner P., Randl O.G.: Fractal geometry of rocks. Phys. Rev. Lett. 82, 3078–3081 (1999)

    Article  Google Scholar 

  • Radlinski A.P., Boreham C.J., Lindner P., Randl O., Wignall G.D., Hinde A.L., Hope J.M.: Small-angle neutron scattering signature of oil generation in artificially and naturally matured hydrocarbon source rocks. Org. Geochem. 31, 1–14 (2000)

    Article  Google Scholar 

  • Radlinski A.P., Ioannidis M.A., Hinde A.L., Hainbuchner M., Baron M., Rauch H., Kline S.R.: Angstrom to millimeter characterization of sedimentary rock microstructure. J. Colloid Interface Sci. 274, 607–612 (2004)

    Article  Google Scholar 

  • Seth S., Morrow N.R.: Efficiency of the conversion of work of drainage to surface energy for sandstone and carbonate. SPE Reserv. Eval. Eng. 10(4), 338–347 (2007)

    Google Scholar 

  • Sisavath S., Jing X.-D., Pain C.C., Zimmerman R.W.: Creeping flow through an axisymmetric sudden contraction or expansion. J. Fluids Eng.–Trans. AMSE 124, 273–278 (2002)

    Article  Google Scholar 

  • Song Y.Q.: Pore sizes and pore connectivity in rocks using the effect of internal field. Magn. Reson. Imaging 19, 417–421 (2001)

    Article  Google Scholar 

  • Song Y.Q., Ryu S.G., Sen P.N.: Determining multiple length scales in rocks. Nature 406, 178–181 (2000)

    Article  Google Scholar 

  • Spanne P., Thovert J.-F., Jacquin C.G., Lindquist W.B., Jones K., Adler P.M.: Synchrotron computed microtomography of porous media: Topology and transports. Phys. Rev. Lett. 73, 2001–2004 (1994)

    Article  Google Scholar 

  • Stauffer D., Aharony A.: Introduction to Percolation Theory. Taylor & Francis, London (1992)

    Google Scholar 

  • Talukdar M.S., Torsaeter O., Ioannidis M.A., Howard J.J.: Stochastic reconstruction of chalk from 2D images. Transp. Porous Med. 48, 101–123 (2002)

    Article  Google Scholar 

  • Thompson A.H., Katz A.J., Krohn C.E.: The microgeometry and transport properties of sedimentary rock. Adv. Phys. 36, 625–694 (1987)

    Article  Google Scholar 

  • Thovert J.-F., Yousefian F., Spanne P., Jacquin C.G., Adler P.M.: Grain reconstruction of porous media: application to a low-porosity Fontainebleau sandstone. Phys. Rev. E 63, 061307 (2001)

    Article  Google Scholar 

  • Torquato S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer-Verlag, New York (2002)

    Google Scholar 

  • Tsakiroglou C.D., Ioannidis M.A.: Dual-porosity modelling of the pore structure and transport properties of a contaminated soil. Eur. J. Soil Sci. 59, 744–761 (2008)

    Article  Google Scholar 

  • Tsakiroglou C.D., Ioannidis M.A., Amirtharaj E., Vizika O.: A new approach for the characterization of the pore structure of dual porosity rocks. Chem. Eng. Sci. 64, 847–859 (2009)

    Article  Google Scholar 

  • Tsakiroglou C.D., Payatakes A.C.: Pore wall roughness as a fractal surface and theoretical simulation of mercury intrusion-retraction in porous media. J. Colloid Interface Sci. 159, 287–301 (1993)

    Article  Google Scholar 

  • Tsakiroglou C.D., Payatakes A.C.: Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation. Adv. Water Res. 23, 773–789 (2000)

    Article  Google Scholar 

  • Wardlaw N.C., Cassan J.P.: Oil recovery efficiency and the rock-pore properties of some sandstone reservoirs. Bull. Can. Petrol. Geol. 27, 117 (1979)

    Google Scholar 

  • Wong P.-Z., Howard J.: Surface roughening and the fractal nature of rocks. Phys. Rev. Lett. 57, 637–640 (1986)

    Article  Google Scholar 

  • Xu K., Daian J.-F., Quenard D.: Multiscale structures to describe porous media. 1. Theoretical background and invasion by fluids. Transp. Porous Med. 26, 51–73 (1997)

    Article  Google Scholar 

  • Zielinski L.J., Song Y.-Q., Ryu S., Sen P.N.: Characterization of coupled pore systems from the diffusion eigenspectrum. J. Chem. Phys. 117, 5361–5365 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ioannidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirtharaj, E.S., Ioannidis, M.A., Parker, B. et al. Statistical Synthesis of Imaging and Porosimetry Data for the Characterization of Microstructure and Transport Properties of Sandstones. Transp Porous Med 86, 135–154 (2011). https://doi.org/10.1007/s11242-010-9612-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9612-x

Keywords

Navigation