Transport in Porous Media

, Volume 86, Issue 1, pp 27–47

Two-Phase Flow in Heterogeneous Porous Media with Non-Wetting Phase Trapping

Open Access
Article

Abstract

This article presents a mathematical model describing flow of two fluid phases in a heterogeneous porous medium. The medium contains disconnected inclusions embedded in the background material. The background material is characterized by higher value of the non-wetting-phase entry pressure than the inclusions, which causes non-standard behavior of the medium at the macroscopic scale. During the displacement of the non-wetting fluid by the wetting one, some portions of the non-wetting fluid become trapped in the inclusions. On the other hand, if the medium is initially saturated with the wetting phase, it starts to drain only after the capillary pressure exceeds the entry pressure of the background material. These effects cannot be represented by standard upscaling approaches based on the assumption of local equilibrium of the capillary pressure. We propose a relevant modification of the upscaled model obtained by asymptotic homogenization. The modification concerns the form of flow equations and the calculation of the effective hydraulic functions. This approach is illustrated with two numerical examples concerning oil–water and CO2–brine flow, respectively.

Keywords

Two-phase flow modeling Capillary trapping Upscaling Homogenization 

References

  1. Amaziane B., Bourgeat A., Koebbe J.: Numerical simulation and homogenization of two-phase flow in heterogeneous porous media. Transport Porous Med. 6(5–6), 519–547 (1991)Google Scholar
  2. Barker J., Thibeau S.: A critical review of the use of pseudo relative permeabilities for upscaling. SPE Reservoir Eng. 12(2), 138–143 (1997)Google Scholar
  3. Braun C., Helmig R., Manthey S.: Macro-scale effective constitutive relationships for two phase flow processes in heterogeneous porous media with emphasis on the relative permeability-saturation relationship. J. Contam. Hydrol. 76(1–2), 47–85 (2005)CrossRefGoogle Scholar
  4. Brooks, R., Corey, A.: Hydraulic Properties of Porous Media. Hydrology Paper 3. Colorado State University, Fort Collins, COGoogle Scholar
  5. Burdine N.: Relative permeability calculations from pore size distribution data. Trans. Am. Inst. Min. Metall. Petrol. Eng. 198, 71–77 (1953)Google Scholar
  6. Eichel H., Helmig R., Neuweiler I., Cirpka O.: Upscaling of two-phase flow processes in porous media. In: Das, D., Hassanizadeh, S. (eds) Upscaling Multiphase Flow in Porous Media, pp. 237–257. Springer, Dordrecht (2005)CrossRefGoogle Scholar
  7. Ekrann S., Aasen J.: Steady-state upscaling. Transport Porous Med. 41(3), 245–262 (2000)CrossRefGoogle Scholar
  8. Flemisch, B., Fritz, J., Helmig, R., Niessner, J., Wohlmuth, B.: DUMUX: a multiscale multi-physics toolbox for flow and transport processes in porous media. In: Ibrahimbegovic, A., Dias, F., Matthies, H., Wriggers, P. (eds.) ECCOMAS Thematic Conference on Multi-scale Computational Methods for Solids and Fluids. Cachan, France, November 28–30 (2007)Google Scholar
  9. Helmig R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of the Hydrosystems. Springer, Berlin (1997)Google Scholar
  10. Jonoud S., Jackson M.: New criteria for the validity of steady-state upscaling. Transport Porous Med. 71(1), 53–73 (2008)CrossRefGoogle Scholar
  11. Kopp A., Class H., Helmig R.: Investigations on CO2 storage capacity in saline aquifers—Part 1: dimensional analysis of flow processes and reservoir characteristics. Int. J. Greenhouse Gas Control 3(3), 263–276 (2009a). doi:10.1016/j.ijggc.2008.10.002 CrossRefGoogle Scholar
  12. Kopp A., Class H., Helmig R.: Investigations on CO2 storage capacity in saline aquifers—Part 1: estimation of storage capacity coefficients. Int. J. Greenhouse Gas Control 3(3), 277–287 (2009b). doi:10.1016/j.ijggc.2008.10.001 CrossRefGoogle Scholar
  13. Lewandowska J., Laurent J.P.: Homogenization modeling and parametric study of moisture transfer in an unsaturated heterogeneous porous medium. Transport Porous Med. 45(3), 321–345 (2001)CrossRefGoogle Scholar
  14. Mualem Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976). doi:10.1029/WR012i003p00513 CrossRefGoogle Scholar
  15. Quintard M., Whitaker S.: Two-phase flow in heterogeneous porous media: the method of large scale averaging. Transport Porous Med. 3(4), 357–413 (1988)CrossRefGoogle Scholar
  16. Saadatpoor E., Bryant S., Sepehrnoori K.: Effect of capillary heterogeneity on buoyant plumes: a new local trapping mechanism. Energy Procedia 1, 3299–3306 (2009a). doi:10.1016/j.egypro.2009.02.116 CrossRefGoogle Scholar
  17. Saadatpoor, E., Bryant, S., Sepehrnoori, K.: New trapping mechanism in carbon sequestration. Transport Porous Med. (2009b). doi:10.1007/s11242-009-9446-6
  18. Saez A., Otero C., Rusinek I.: The effective homogeneous behavior of heterogeneous porous media. Transport Porous Med. 4(3), 213–238 (1989)CrossRefGoogle Scholar
  19. Span R., Wagner W.: A new equation of state for carbon dioxide covering the fluid region from the triple point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25, 1509–1596 (1996)CrossRefGoogle Scholar
  20. Stephen K., Pickup G., Sorbie K.: The local analysis of changing force balances in immiscible incompressible twophase flow. Transport Porous Med. 45(1), 63–88 (2001)CrossRefGoogle Scholar
  21. Szymkiewicz A.: Calculating effective conductivity of heterogeneous soils by homogenization. Arch. Hydro-eng. Environ. Mech. 52(2), 111–130 (2005)Google Scholar
  22. van Duijn C., Mikelic A., Pop I.: Effective equations for two phase flow with trapping on the micro scale. SIAM J. Appl. Math. 62, 531–1568 (2002)Google Scholar
  23. van Duijn C., Eichel H., Helmig R., Pop I.: Effective equations for two-phase flow in porous media: the effect of trapping at the micro-scale. Transport Porous Med. 69(3), 411–428 (2007). doi:10.1007/s11242-006-9089-9 CrossRefGoogle Scholar
  24. van Genuchten M.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)CrossRefGoogle Scholar
  25. Vasin M., Lehmann P., Kaestner A., Hassanein R., Nowak W., Helmig R., Neuweiler I.: Drainage in heterogeneous sand columns with different geometric structure. Adv. Water Res. 31(9), 1205–1220 (2008)CrossRefGoogle Scholar
  26. Vereecken H., Kasteel R., Vanderborght J., Harter T.: Upscaling hydraulic properties and soil water flow processes in heterogeneous soils: a review. Vadose Zone J. 6(1), 1–28 (2007)CrossRefGoogle Scholar
  27. Virnovsky G., Friis H., Lohne A.: A steady-state upscaling approach for immiscible two-phase flow. Transport Porous Med. 54(2), 167–192 (2004)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Adam Szymkiewicz
    • 1
  • Rainer Helmig
    • 2
  • Hartmut Kuhnke
    • 2
  1. 1.Department of Geotechnics, Geology and Marine Engineering, Faculty of Civil and Environmental EngineeringGdańsk University of TechnologyGdańskPoland
  2. 2.Department of Hydromechanics and Modeling of Hydrosystems, Institute of Hydraulic EngineeringUniversität StuttgartStuttgartGermany

Personalised recommendations