Skip to main content
Log in

New Renormalization Schemes for Conductivity Upscaling in Heterogeneous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Two new renormalization schemes for conductivity upscaling in heterogeneous media are presented. The schemes follow previous ones by performing the renormalization over square cells of size 2d with d being the dimensionality. Contrasting with previous schemes, the two-dimensional scheme makes use of the exact 2 × 2 block-conductivity. On the basis of the structure of the exact two-dimensional block-conductivity, an analogous three-dimensional scheme is proposed. The new schemes are tested on a number of benchmark problems and are shown to be significantly more accurate than existing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Craster R.V., Obnosov Y.V.: Four-phase checkerboard composites. SIAM J. Appl. Math. 61, 1839–1856 (2001)

    Article  Google Scholar 

  • Dagan G.: Higher-order correction of effective permeability of heterogeneous isotropic formations of lognormal conductivity distribution. Transp. Porous Media 12, 279–290 (1993)

    Article  Google Scholar 

  • De Wit A.: Correlation structure dependence of the effective permeability of heterogeneous porous media. Phys. Fluids 7, 2553–2562 (1995)

    Article  Google Scholar 

  • Dykaar B.B., Kitanidis P.K.: Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach 2. Results. Water Resour. Res. 28, 1167–1178 (1992)

    Article  Google Scholar 

  • Dykhne A.M.: Conductivity of a two-dimensional two-phase system. Sov. Phys. JETP 32, 63–65 (1971)

    Google Scholar 

  • Ewing R.P., Hunt A.G.: Dependence of the electrical conductivity on saturation in real porous media. Vadose Zone J. 5, 731–741 (2006)

    Article  Google Scholar 

  • Green C.P., Patterson L.: Analytical three-dimensional renormalization for calculating effective permeabilities. Transp. Porous Media 68, 237–248 (2007)

    Article  Google Scholar 

  • Gutjahr A.L., Gelhar L.W., Bakr A.A., McMillan J.R.: Stochastic analysis of spatial variability in subsurface flow 2: Evaluation and application. Water Resour. Res. 14, 953–959 (1978)

    Article  Google Scholar 

  • Jiang M., Jasiuk I., Ostoja-Starzewski M.: Apparent thermal conductivity of periodic two-dimensional composites. Comput. Mater. Sci. 25, 329–338 (2002)

    Article  Google Scholar 

  • Karim, M.R., Krabbenhoft, K.: Extraction of effective cement paste diffusivities from X-ray microtomography scans. Transp. Porous Media (2010, in press). doi:10.1007/s11242-009-9506-y

  • Keller J.B.: Effective conductivity of periodic composites composed of two very unequal conductors. J. Math. Phys. 28, 2516–2520 (1987)

    Article  Google Scholar 

  • Kim I.C., Torquato S.: Effective conductivity of suspensions of overlapping spheres. J. Appl. Phys. 71, 2727–2735 (1992)

    Article  Google Scholar 

  • King P.R.: The use of renormalization for calculating effective permeability. Transp. Porous Media 4, 37–55 (1989)

    Article  Google Scholar 

  • Klemm, A., Kimmich, R., Weber, M.: Flow through percolation clusters: NMR velocity mapping and numerical simulation study. Phys. Rev. E 63(041514) (2001)

  • Lunati I. et al.: A numerical comparison between two upscaling techniques: non-local inverse based scaling and simplified renormalization. Adv. Water Resour. 24, 914–929 (2001)

    Article  Google Scholar 

  • Matheron G.: Elements pour une theorie des milieux poreux. Masson et Cie, Paris (1967)

    Google Scholar 

  • Milton G.W.: Proof of a conjecture on the conductivity of checkerboards. J. Math. Phys. 42, 4873–4882 (2001)

    Article  Google Scholar 

  • Milton G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  • Mortola S., Steffe S.: A two-dimensional homogenization problem. Atti della Accademia Nazionale dei Lincei, Serie VIII 73(3), 77–82 (1985)

    Google Scholar 

  • Neuman S.P., Orr S.: Prediction of steady state flow in nonuniform geologic media by conditional moments: Exact nonlocal formalism, effective conductivities, and weak approximation. Water Resour. Res. 29, 341–364 (1993)

    Article  Google Scholar 

  • Ostoja-Starzewski M., Schulte J.: Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. Phys. Rev. B 54, 278–285 (1996)

    Article  Google Scholar 

  • Renard P., de Marsily G.: Calculating equivalent permeability: a review. Adv. Water Resour. 20, 253–278 (1997)

    Article  Google Scholar 

  • Renard P. et al.: A fast algorithm for the estimation of the equivalent hydraulic conductivity of heterogeneous media. Water Resour. Res. 36, 3567–3580 (2000)

    Article  Google Scholar 

  • Sanchez-Vila X., Guadagnini A., Carrera J.: Representative hydraulic conductivities in saturated groundwater flow. Rev. Geophys. 44, 1–46 (2006)

    Article  Google Scholar 

  • Torquato S.: Random Heterogeneous Materials. Springer, New York (2002)

    Google Scholar 

  • Torquato S., Kim I.C., Cule D.: Effective conductivity, dielectric constant, and diffusion coefficient of digitized composite media via first-passage-time equations. J. Appl. Phys. 85, 1560–1571 (1999)

    Article  Google Scholar 

  • Yeo I.W., Zimmerman R.W.: Accurary of renormalization method for computing effective conductivities of heterogeneous media. Transp. Porous Media 45, 129–138 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Krabbenhoft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim, M.R., Krabbenhoft, K. New Renormalization Schemes for Conductivity Upscaling in Heterogeneous Media. Transp Porous Med 85, 677–690 (2010). https://doi.org/10.1007/s11242-010-9585-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9585-9

Keywords

Navigation