Skip to main content
Log in

Flow Around a Crack in a Porous Matrix and Related Problems

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

An Erratum to this article was published on 02 March 2010

Abstract

The equations governing plane steady-state flow in heterogeneous porous body containing cracks are presented first. Then, a general transformation lemma is presented which allows extending a particular solution obtained for a given flow problem to another configuration with different geometry, behaviour and boundary conditions. An existing potential solution in terms of discharges along the cracks, established by Liolios and Exadaktylos (J Solids Struct 43:3960–3982, 2006) for non-intersecting cracks in isotropic matrix, is extended to intersecting cracks in anisotropic matrix. The basic problem of a single straight crack in an infinite body submitted to a pressure gradient at infinity is then investigated and a closed-form solution is presented for the case of void cracks (infinite conductivity), as well as a semi-analytical solution for the case of cracks with Poiseuille type conductivity. These solutions, derived first for an isotropic matrix, are then extended to anisotropic matrices using the general transformation lemma. Finally, using the solution obtained for a single crack, a closed-form estimation of the effective permeability of micro-cracked porous materials with weak crack density is derived from a self-consistent upscaling scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barthélémy J.-F.: Effective permeability of media with a dense network of long and micro fractures. Transp Porous Media 76, 153–178 (2009)

    Article  Google Scholar 

  • Bonnet M.: Equations Intégrales et Éléments de Frontière. CNRS Editions/Eyrolles, Paris (1995)

    Google Scholar 

  • Castany G.: Traité Pratique des Eaux Souterraines. Editions Dunod, Paris (1967)

    Google Scholar 

  • Dormieux L., Kondo D.: Approche micromécanique du couplage perméabilité-endommagement. C.R. Mecanique 332, 135–140 (2004)

    Article  Google Scholar 

  • Eshelby J.D.: Determination of the elastic filed of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A241, 376–396 (1957)

    Google Scholar 

  • Goméz-Hernández J.J., Wen X.H.: Upscaling hydraulic conductivities in heterogeneous media: an overview. J. Hydrol. 183, ix–xxxii (1996)

    Google Scholar 

  • Guéguen Y., Palciauskas V.: Introduction to Physics of Rocks. Princeton University Press, Princeton (1994)

    Google Scholar 

  • Kachanov M.: Elastic solid with many cracks and related problems. In: Hutchinson, J.W., Wu, T. (eds) Advances in Applied Mechanics, vol 30, pp. 259–445. Academic Press, New York (1993)

    Chapter  Google Scholar 

  • Liolios P.A., Exadaktylos G.E.: A solution of steady-state fluid flow in multiply fractured isotropic porous media. Int. J. Solids Struct. 43, 3960–3982 (2006)

    Article  Google Scholar 

  • Milton, G.W.: The Theory of Composites, pp. 1454–147. Cambridge University Press, Cambridge (2002)

  • Mourzenko, V.V., Thovert, J.-F., Adler, P.M.: Macroscopic properties of polydisperse, anisotropic and/or heterogeneous fracture networks. Proceedings of the International Conference on Rock Joints and Jointed Rock Masses, Tucson, Arizona, USA, (2009)

  • Muskhelishvili N.I.: Singular Integral Equations. P. Noordhoff Ltd., Groningen, Holland (1953)

    Google Scholar 

  • Pouya A.: Equivalent permeability tensors of a finite heterogeneous block. C.R. Géosci. 337, 581–588 (2005)

    Article  Google Scholar 

  • Pouya A., Courtois A.: Définition de la perméabilité équivalente des massifs fracturés par des méthodes d’homogénéisation. C.R. Géosci. 334, 975–979 (2002)

    Article  Google Scholar 

  • Pouya A., Fouché O.: Permeability of 3D discontinuity networks: new tensors from boundary-conditioned homogenization. Adv. Water Resour. 32, 303–314 (2009)

    Article  Google Scholar 

  • Pouya A., Zaoui A.: A transformation of elastic boundary value problems with application to anisotropic behavior. Int. J. Solids Struct. 43, 4937–4956 (2006)

    Article  Google Scholar 

  • Renard P., de Marsily G.: Calculating equivalent permeability: a review. Adv. Water Resour. 20(5-6), 253–278 (1997)

    Article  Google Scholar 

  • Sánchez-Vila X., Girardi G.P., Carrera J.: A synthesis of approaches to upscaling of hydraulic conductivities. Water Resour. Res. 31(4), 867–882 (1995)

    Article  Google Scholar 

  • Zhao C., Hobbs B.E., Ord A., Hornby P., Mühlhaus H., Peng S.: Theoretical and numerical analyses of pore-fluid flow focused heat transfer around geological faults and large cracks. Comput. Geotech. 35, 357–371 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Pouya.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11242-010-9544-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouya, A., Ghabezloo, S. Flow Around a Crack in a Porous Matrix and Related Problems. Transp Porous Med 84, 511–532 (2010). https://doi.org/10.1007/s11242-009-9517-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9517-8

Keywords

Navigation