Transport in Porous Media

, Volume 84, Issue 1, pp 109–132 | Cite as

Radial Capillary Transport from an Infinite Reservoir

  • Michael ConrathEmail author
  • Nicolas Fries
  • Ming Zhang
  • Michael E. Dreyer


Radial capillary transport occurs, for example, when wine spreads in the tablecloth ink in paper, rain drops in textiles, or dye into yarn. It is of technical relevance for propellant and other liquid transport in space. We present a theoretical and experimental study on the more basic situation when liquid spreads radially from an infinite reservoir. Our theoretical model predicts both outward and inward radial transport in a porous screen. While the outward wicking is fed by a circular wick in the center, the inward wicking is fed by a ring-like wick from the outside. For both cases, an analytical solution is obtained in terms of time versus radius as well as radius versus time aided by the Lambert W function. In the experiments, we use four different filter papers combined with three cylindrical wicks for outward wicking and one ring wick for inward wicking, respectively. The wicking process is recorded by a digital camera. Afterward, the resulting image series are evaluated with Matlab routines to detect the wicking front line. From the wetted area, we derive the mean radius versus time. Beside radially outward and inward wicking, we consider also experimental reference data from horizontal and vertical wicking in a strip.


Wicking Radial capillary transport Porous medium Lucas–Washburn Imbibition 



Porosity of the screen


Dynamic viscosity (kg/ms)


Dimensionless parameter


Dimensionless parameter


Dimensionless parameter


Density of liquid (kg/m3)


Regression coefficient (horizontal strip exp.)


Regression coefficient (vertical strip exp.)


Surface tension (N/m)


Contact angle


Viscous wicking constant (m2/s)


a found in horizontal strip experiment (m2/s)


a found in vertical strip experiment (m2/s)


Mean value of a (m2/s)


Error of a (m2/s)


Inertial wicking constant (m2/s2)


Capillary number


Height difference between screen and reservoir (m)


Height (=thickness) of the screen (m)


Permeability of the screen (m2)


Characteristic length (m)


Ohnesorge number


Radial coordinate (m)


Initial radius of the wetted spot (wick radius) (m)


Radius of the wetted spot (m)


Mean static pore radius (m)


Dimensionless spot radius


Distance between screen and camera (m)


Time (s)


Dimensionless time


Velocity of the front line (m/s)


Liquid flow rate (m3/s)


Dimensionless liquid flow rate


Strip width in horizontal reference experiment (m)


Lambert W function


Initial meniscus position in the strip experiments (m)


Meniscus position in the strip experiments (m)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernet M., Michaud V., Bourban P.E., Manson J.A.E.: An impregnation model for the consolidation of thermoplastic composites made from commingled yarns. J. Compos. Mater. 33(8), 751–772 (1999)Google Scholar
  2. Bronstein I.N., Semendjajew K.A.: Handbook of Mathematics (20th edn.). Van Nostrand Reinhold, New York (1991)Google Scholar
  3. Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)CrossRefGoogle Scholar
  4. Danino D., Marmur A.: Radial capillary penetration into paper: limited and unlimited liquid reservoirs. J. Colloid Interface Sci. 166(1), 245–250 (1994)CrossRefGoogle Scholar
  5. Fries N., Odic K., Conrath M., Dreyer M.: The effect of evaporation on the wicking of liquids into a metallic weave. J. Colloid Interface Sci. 321, 118–129 (2008)CrossRefGoogle Scholar
  6. Hsu N., Ashgriz N.: Nonlinear penetration of liquid drops into radial capillaries. J. Colloid Interface Sci. 270(1), 146–162 (2004)CrossRefGoogle Scholar
  7. Kawase T., Sekoguchi S., Fuji T., Minagawa M.: Spreading of liquids in textile assemblies. Text. Res. J. 56(7), 409–414 (1986)CrossRefGoogle Scholar
  8. Kissa E.: Capillary sorption in fibrous assemblies. J. Colloid Interface Sci. 83(1), 265–272 (1981)CrossRefGoogle Scholar
  9. Lucas R.: Ueber das Zeitgesetz des kapillaren Aufstiegs von Fluessigkeiten. Kolloid-Z. 23, 15–22 (1918)CrossRefGoogle Scholar
  10. Marmur A.: The radial capillary. J. Colloid Interface Sci. 124(1), 301–308 (1988)CrossRefGoogle Scholar
  11. Mason, G., Fischer, H., Morrow, N.R., Ruth, D.W.: Spontaneous counter-current imbibition into core samples with all faces open. Transp. Porous Media, Online First (2008). doi: 10.1007/s11242-008-9296-7
  12. Neacsu V., Abu Obaid A., Advani S.G.: Spontaneous radial capillary impregnation across a bank of aligned micro-cylinders—part 1: theory and model development. Int. J. Multiph. Flow 32, 661–676 (2006a)CrossRefGoogle Scholar
  13. Neacsu V., Abu Obaid A., Advani S.G.: Spontaneous radial capillary impregnation across a bank of aligned micro-cylinders—part 2: experimental investigations. Int. J. Multiph. Flow 32, 677–691 (2006b)CrossRefGoogle Scholar
  14. Smiles D.E.: Water flow in filter paper and capillary suction ime. Chem. Eng. Sci. 53(12), 2211–2218 (1998)CrossRefGoogle Scholar
  15. Standnes D.C.: Spontaneous imbibition of water into cylindical cores with high aspect ratio: Numerical and experimental results. J. Pet. Sci. Eng. 50, 151–160 (2006)CrossRefGoogle Scholar
  16. Washburn E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273–283 (1921a)CrossRefGoogle Scholar
  17. Washburn E.W.: Note on a method of determining the distribution of pore sizes in a porous material. Proc. Natl. Acad. Sci. USA 7(4), 115–116 (1921b)CrossRefGoogle Scholar
  18. White F.M.: Fluid Mechanics (5th edn.). McGrawHill, New York (2003)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Michael Conrath
    • 1
    Email author
  • Nicolas Fries
    • 1
  • Ming Zhang
    • 1
  • Michael E. Dreyer
    • 1
  1. 1.Center of Applied Space Technology and Microgravity (ZARM)University of BremenBremenGermany

Personalised recommendations