Transport in Porous Media

, Volume 84, Issue 1, pp 1–19 | Cite as

Tortuosity Effects in Coupled Advective Transport and Mechanical Properties of Fractured Geomaterials

  • Eric LemarchandEmail author
  • Catherine A. Davy
  • Luc Dormieux
  • Frédéric Skoczylas


This article is concerned with tortuosity effects in coupled transport and mechanical properties of fractured geomaterials. Experimental results on confined fractured argillite samples are presented in terms of (1) progressive fracture reclosure and (2) fracture in plane permeability evolution, both depending upon confinement intensity. The observed non-linear mechanical response (fracture reclosure law) is physically interpreted as the progressive reclosure of local pores. The weak correlation between mechanical and hydraulic measurements is attributed to tortuosity effects which enhance the initial decrease of the permeability. The classical Self-Consistent scheme is herewith developed to qualitatively and quantitatively give theoretical basis likely to account for these tortuosity effects on permeability evolution.


Tortuosity Micromechanics Hydraulic behaviour Fractured argillites Self-Consistent estimates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barthélémy J.-F.: Effective permeability of media with a dense network of long and micro fractures. Transp. Porous Med. 76(1), 153–178 (2009)CrossRefGoogle Scholar
  2. Berkowitz B.: Analysis of fracture network connectivity using percolation theory. Math. Geol. 27(4), 467–483 (1995)CrossRefGoogle Scholar
  3. Berkowitz B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25, 861–884 (2002)CrossRefGoogle Scholar
  4. Bernabe Y., Brace W.: Permeability porosity pore geometry hot pressed calcite. Mech. Mater. 1(3), 173–183 (1982)CrossRefGoogle Scholar
  5. Budiansky B., O’Connell R.: Elastic moduli of a cracked solid. Int. J. Solids Struct. 12, 81–97 (1976)CrossRefGoogle Scholar
  6. Cook N.: Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 29, 198–223 (1992)CrossRefGoogle Scholar
  7. Davy C.A., Skoczylas F., Barnichon J.-D., Lebon P.: Permeability of macro-cracked argillite under confinement: gas and water testing. Phys. Chem. Earth 32, 667–680 (2007)Google Scholar
  8. Deudé V., Dormieux L., Kondo D., Maghous S.: Micromechanical approach to non-linear poroelasticity: application to cracked rocks. J. Eng. Mech. ASCE 128(8), 848–855 (2002)CrossRefGoogle Scholar
  9. Dormieux L., Kondo D.: Approche micromécanique du couplage perméabilité-endommagement. Comptes Rendus de Mécanique 332(2), 135–140 (2004)CrossRefGoogle Scholar
  10. Dormieux L., Lemarchand E.: Modélisation macroscopique du transport diffusif: apport des méthodes de changement d’échelle d’espace. Oil & Gas - Revue de l’Institut Francais du Pétrole 55(1), 15–34 (2000)CrossRefGoogle Scholar
  11. Dormieux L., Lemarchand E.: A homogenization approach of advection and diffusion in cracked porous material. J. Eng. Mech. ASCE 127(12), 1267–1274 (2001)CrossRefGoogle Scholar
  12. Dormieux L., Kondo D., Ulm F.-J.: Microporomechanics. Wiley, New York (2006)CrossRefGoogle Scholar
  13. Eshelby J.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A241, 235–251 (1957)Google Scholar
  14. Guegen Y., Palciauskas V.: Introduction à la Physique des Roches. Hermann, Paris (1992)Google Scholar
  15. Guéguen Y., Chelidze T., Ravalec M.L.: Microstructures, percolation thresholds and rock physical properties. Tectonophysics 279, 23–35 (1997)CrossRefGoogle Scholar
  16. Iwai, K.: Fundamental studies of fluid flow through a single fracture. PhD thesis, University of California, Berkeley, CA (1976)Google Scholar
  17. Jaeger, J., Cook, N., Zimmerman, R.: Fundamentals of Rock Mechanics, 4th edn. Volume ISBN: 9780632057597, ISBN10: 0632057599. Blackwell Publishing (2007)Google Scholar
  18. Lemarchand, E.: Contribution de la micromécanique à l’étude des phénomènes de transport et de couplage poromécanique dans les milieux poreux: Application aux phénomènes de gonflement dans les géomatériaux. PhD thesis, École nationale des ponts et chaussées, Paris, France (2001)Google Scholar
  19. Lemarchand E., Davy C.A., Dormieux L., Chen W., Skoczylas F.: Micromechanics contribution to coupled transport and mechanical properties of fractured geomaterials. Transp. Porous Med. 79(3), 335–358 (2009)CrossRefGoogle Scholar
  20. Loosveldt H., Lafhaj Z., Skoczylas F.: Experimental study of gas and liquid permeability of a mortar. Cem. Concr. Res. 32, 1357–1363 (2002)CrossRefGoogle Scholar
  21. Meziani H., Skoczylas F.: An experimental study of the mechanical behaviour of a mortar and of its permeability under deviatoric loading. Mater. Struct. 32, 403–409 (1999)CrossRefGoogle Scholar
  22. Montemagno C., Pyrak-Nolte L.: Porosity of natural fracture networks. Geophys. Res. Lett. 22(11(HS)), 1397–1400 (1995)CrossRefGoogle Scholar
  23. Murata S., Saito T.: Estimation of tortuosity of fluid flow through a single fracture. J. Can. Pet. Technol. 42(12), 39–45 (2003)Google Scholar
  24. Neuzil C., Tracy J.: Flow through fractures. Water Resour. Res. 17(1), 191–199 (1981)CrossRefGoogle Scholar
  25. Oron A., Berkowitz B.: Flow in rock fractures: the local cubic law assumption reexamined. Water Resour. Res. 34(11), 2811–2825 (1998)CrossRefGoogle Scholar
  26. Podzniakov S., Tsang C.-F.: A self-consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium. Water Resour. Res. 40(W05105), 1–13 (2000)Google Scholar
  27. Pyrak-Nolte L., Cook N., Nolte D.: Fluid percolation through single fractures. Geophys. Res. Lett. 15(11), 1247–1250 (1988)CrossRefGoogle Scholar
  28. Sausse J.: Hydromechanical properties and alteration of natural fracture surfaces in the Soultz granite (Bas-Rhin, France). Tectonophysics 348, 169–185 (2002)CrossRefGoogle Scholar
  29. Sisavath S., Al-Yaaruby A., Pain C., Zimmerman R.: A simple model for deviations from the cubic law for a fracture undergoing dilation or closure. Pure Appl. Geophys. 160(5/6), 1009–1022 (2003)CrossRefGoogle Scholar
  30. Skoczylas, F.: Ecoulements et couplages fluide-squelette dans les milieux poreux. Etudes expérimentales et numériques. Mémoire d’Habilitation à Diriger des Recherches, Université des Sciences et Technologie de Lille, France (1996)Google Scholar
  31. Tsang Y.: The effect of tortuosity on fluid flow through a single fracture. Water Resour. Res. 20(9), 1209–1215 (1984)CrossRefGoogle Scholar
  32. Tsang Y., Tsang C.: Channel model of flow through fractured media. Water Resour. Res. 23(3), 467–479 (1987)CrossRefGoogle Scholar
  33. Tsang Y., Witherspoon P.: The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size. J. Geophys. Res. 88(B3), 2359–2366 (1983)CrossRefGoogle Scholar
  34. Viggiani G. et al.: X-ray microtomography for studying localized deformation in fine-grained geomaterials under triaxial compression. Comptes Rendus de Mécanique 332, 819–826 (2004)Google Scholar
  35. Walsh J., Brown S., Durham W.: Effective media theory with spatial correlation for flow in fracture. J. Geophys. Res. 102(B10), 22587–22594 (1997)CrossRefGoogle Scholar
  36. Walters D., Wong R.: The hydraulic and mechanical response of an oil sand fracture under varying confining pressure. Can. Geotech. J. 36(2), 262–271 (1999)CrossRefGoogle Scholar
  37. Wanfang Z., Wheater H., Johnston P.: State of the art of modelling two-phase flow in fractured rock. Environ. Geol. 31(3/4), 157–166 (1997)CrossRefGoogle Scholar
  38. Zimmerman, R., Yeo, I.: Fluid Flow in Rock Fractures: From the Navier-Stokes Equations to the Cubic Law. American Geophysical Union (2000)Google Scholar
  39. Zimmerman R., Chen D., Cook N.: The effect of contact area on the permeability of fractures. J. Hydrol. 139(1–4), 79–96 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Eric Lemarchand
    • 1
    Email author
  • Catherine A. Davy
    • 2
  • Luc Dormieux
    • 3
  • Frédéric Skoczylas
    • 4
  1. 1.Université Paris Est, UR Navier, LMSGCChamps sur MarneFrance
  2. 2.LML CNRS UMR 8107Villeneuve d’Ascq CedexFrance
  3. 3.Université Paris Est, UR Navier, Ecole des PontsMarne la ValléeFrance
  4. 4.Ecole Centrale de Lille, LML CNRS UMR 8107Villeneuve d’Ascq CedexFrance

Personalised recommendations