Skip to main content
Log in

Tortuosity Effects in Coupled Advective Transport and Mechanical Properties of Fractured Geomaterials

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This article is concerned with tortuosity effects in coupled transport and mechanical properties of fractured geomaterials. Experimental results on confined fractured argillite samples are presented in terms of (1) progressive fracture reclosure and (2) fracture in plane permeability evolution, both depending upon confinement intensity. The observed non-linear mechanical response (fracture reclosure law) is physically interpreted as the progressive reclosure of local pores. The weak correlation between mechanical and hydraulic measurements is attributed to tortuosity effects which enhance the initial decrease of the permeability. The classical Self-Consistent scheme is herewith developed to qualitatively and quantitatively give theoretical basis likely to account for these tortuosity effects on permeability evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barthélémy J.-F.: Effective permeability of media with a dense network of long and micro fractures. Transp. Porous Med. 76(1), 153–178 (2009)

    Article  Google Scholar 

  • Berkowitz B.: Analysis of fracture network connectivity using percolation theory. Math. Geol. 27(4), 467–483 (1995)

    Article  Google Scholar 

  • Berkowitz B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25, 861–884 (2002)

    Article  Google Scholar 

  • Bernabe Y., Brace W.: Permeability porosity pore geometry hot pressed calcite. Mech. Mater. 1(3), 173–183 (1982)

    Article  Google Scholar 

  • Budiansky B., O’Connell R.: Elastic moduli of a cracked solid. Int. J. Solids Struct. 12, 81–97 (1976)

    Article  Google Scholar 

  • Cook N.: Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 29, 198–223 (1992)

    Article  Google Scholar 

  • Davy C.A., Skoczylas F., Barnichon J.-D., Lebon P.: Permeability of macro-cracked argillite under confinement: gas and water testing. Phys. Chem. Earth 32, 667–680 (2007)

    Google Scholar 

  • Deudé V., Dormieux L., Kondo D., Maghous S.: Micromechanical approach to non-linear poroelasticity: application to cracked rocks. J. Eng. Mech. ASCE 128(8), 848–855 (2002)

    Article  Google Scholar 

  • Dormieux L., Kondo D.: Approche micromécanique du couplage perméabilité-endommagement. Comptes Rendus de Mécanique 332(2), 135–140 (2004)

    Article  Google Scholar 

  • Dormieux L., Lemarchand E.: Modélisation macroscopique du transport diffusif: apport des méthodes de changement d’échelle d’espace. Oil & Gas - Revue de l’Institut Francais du Pétrole 55(1), 15–34 (2000)

    Article  Google Scholar 

  • Dormieux L., Lemarchand E.: A homogenization approach of advection and diffusion in cracked porous material. J. Eng. Mech. ASCE 127(12), 1267–1274 (2001)

    Article  Google Scholar 

  • Dormieux L., Kondo D., Ulm F.-J.: Microporomechanics. Wiley, New York (2006)

    Book  Google Scholar 

  • Eshelby J.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A241, 235–251 (1957)

    Google Scholar 

  • Guegen Y., Palciauskas V.: Introduction à la Physique des Roches. Hermann, Paris (1992)

    Google Scholar 

  • Guéguen Y., Chelidze T., Ravalec M.L.: Microstructures, percolation thresholds and rock physical properties. Tectonophysics 279, 23–35 (1997)

    Article  Google Scholar 

  • Iwai, K.: Fundamental studies of fluid flow through a single fracture. PhD thesis, University of California, Berkeley, CA (1976)

  • Jaeger, J., Cook, N., Zimmerman, R.: Fundamentals of Rock Mechanics, 4th edn. Volume ISBN: 9780632057597, ISBN10: 0632057599. Blackwell Publishing (2007)

  • Lemarchand, E.: Contribution de la micromécanique à l’étude des phénomènes de transport et de couplage poromécanique dans les milieux poreux: Application aux phénomènes de gonflement dans les géomatériaux. PhD thesis, École nationale des ponts et chaussées, Paris, France (2001)

  • Lemarchand E., Davy C.A., Dormieux L., Chen W., Skoczylas F.: Micromechanics contribution to coupled transport and mechanical properties of fractured geomaterials. Transp. Porous Med. 79(3), 335–358 (2009)

    Article  Google Scholar 

  • Loosveldt H., Lafhaj Z., Skoczylas F.: Experimental study of gas and liquid permeability of a mortar. Cem. Concr. Res. 32, 1357–1363 (2002)

    Article  Google Scholar 

  • Meziani H., Skoczylas F.: An experimental study of the mechanical behaviour of a mortar and of its permeability under deviatoric loading. Mater. Struct. 32, 403–409 (1999)

    Article  Google Scholar 

  • Montemagno C., Pyrak-Nolte L.: Porosity of natural fracture networks. Geophys. Res. Lett. 22(11(HS)), 1397–1400 (1995)

    Article  Google Scholar 

  • Murata S., Saito T.: Estimation of tortuosity of fluid flow through a single fracture. J. Can. Pet. Technol. 42(12), 39–45 (2003)

    Google Scholar 

  • Neuzil C., Tracy J.: Flow through fractures. Water Resour. Res. 17(1), 191–199 (1981)

    Article  Google Scholar 

  • Oron A., Berkowitz B.: Flow in rock fractures: the local cubic law assumption reexamined. Water Resour. Res. 34(11), 2811–2825 (1998)

    Article  Google Scholar 

  • Podzniakov S., Tsang C.-F.: A self-consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium. Water Resour. Res. 40(W05105), 1–13 (2000)

    Google Scholar 

  • Pyrak-Nolte L., Cook N., Nolte D.: Fluid percolation through single fractures. Geophys. Res. Lett. 15(11), 1247–1250 (1988)

    Article  Google Scholar 

  • Sausse J.: Hydromechanical properties and alteration of natural fracture surfaces in the Soultz granite (Bas-Rhin, France). Tectonophysics 348, 169–185 (2002)

    Article  Google Scholar 

  • Sisavath S., Al-Yaaruby A., Pain C., Zimmerman R.: A simple model for deviations from the cubic law for a fracture undergoing dilation or closure. Pure Appl. Geophys. 160(5/6), 1009–1022 (2003)

    Article  Google Scholar 

  • Skoczylas, F.: Ecoulements et couplages fluide-squelette dans les milieux poreux. Etudes expérimentales et numériques. Mémoire d’Habilitation à Diriger des Recherches, Université des Sciences et Technologie de Lille, France (1996)

  • Tsang Y.: The effect of tortuosity on fluid flow through a single fracture. Water Resour. Res. 20(9), 1209–1215 (1984)

    Article  Google Scholar 

  • Tsang Y., Tsang C.: Channel model of flow through fractured media. Water Resour. Res. 23(3), 467–479 (1987)

    Article  Google Scholar 

  • Tsang Y., Witherspoon P.: The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size. J. Geophys. Res. 88(B3), 2359–2366 (1983)

    Article  Google Scholar 

  • Viggiani G. et al.: X-ray microtomography for studying localized deformation in fine-grained geomaterials under triaxial compression. Comptes Rendus de Mécanique 332, 819–826 (2004)

    Google Scholar 

  • Walsh J., Brown S., Durham W.: Effective media theory with spatial correlation for flow in fracture. J. Geophys. Res. 102(B10), 22587–22594 (1997)

    Article  Google Scholar 

  • Walters D., Wong R.: The hydraulic and mechanical response of an oil sand fracture under varying confining pressure. Can. Geotech. J. 36(2), 262–271 (1999)

    Article  Google Scholar 

  • Wanfang Z., Wheater H., Johnston P.: State of the art of modelling two-phase flow in fractured rock. Environ. Geol. 31(3/4), 157–166 (1997)

    Article  Google Scholar 

  • Zimmerman, R., Yeo, I.: Fluid Flow in Rock Fractures: From the Navier-Stokes Equations to the Cubic Law. American Geophysical Union (2000)

  • Zimmerman R., Chen D., Cook N.: The effect of contact area on the permeability of fractures. J. Hydrol. 139(1–4), 79–96 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Lemarchand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemarchand, E., Davy, C.A., Dormieux, L. et al. Tortuosity Effects in Coupled Advective Transport and Mechanical Properties of Fractured Geomaterials. Transp Porous Med 84, 1–19 (2010). https://doi.org/10.1007/s11242-009-9481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9481-3

Keywords

Navigation