Skip to main content
Log in

Nonlinear Multigrid Methods for Numerical Solution of the Unsaturated Flow Equation in Two Space Dimensions

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Picard and Newton iterations are widely used to solve numerically the nonlinear Richards’ equation (RE) governing water flow in unsaturated porous media. When solving RE in two space dimensions, direct methods applied to the linearized problem in the Newton/Picard iterations are inefficient. The numerical solving of RE in 2D with a nonlinear multigrid (MG) method that avoids Picard/Newton iterations is the focus of this work. The numerical approach is based on an implicit, second-order accurate time discretization combined with a second-order accurate finite difference spatial discretization. The test problems simulate infiltration of water in 2D unsaturated soils with hydraulic properties described by Broadbridge–White and van Genuchten–Mualem models. The numerical results show that nonlinear MG deserves to be taken into consideration for numerical solving of RE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Baca R.G., Chung J.N., Mulla D.: Mixed transform finite element method for solving the non-linear equation for flow in variably saturated porous media. Int. J. Numer. Methods Fluids 24, 441–455 (1997)

    Google Scholar 

  • Barry D.A., Parlange J.Y., Sander G.C., Sivaplan M.: A class of exact solutions for Richards equation. J. Hydrol. 142, 29–46 (1993)

    Article  Google Scholar 

  • Bause M., Knabner P.: Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv. Water Resour. 27, 565–581 (2004)

    Article  Google Scholar 

  • Bear J., Bachmat Y.: Introduction to Modelling of Transport Phenomena in Porous Media. Kluwer, Dordrecht (1991)

    Google Scholar 

  • Berganaschi I., Putti M.: Mixed finite elements and Newton-type linearizations for the solution of Richards’ equation. Int. J. Numer. Methods Eng. 45, 1025–1046 (1999)

    Article  Google Scholar 

  • Brandt A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)

    Article  Google Scholar 

  • Broadbridge P., Rogers C.: Exact solutions for vertical drainage and redistribution in soils. J. Eng. Math. 24, 25–43 (1990)

    Article  Google Scholar 

  • Broadbridge P., White I.: Constant rate rainfall infiltration: a versatile nonlinear model 1. Anal. Solut. Water Resour. Res. 24, 145–154 (1988)

    Article  Google Scholar 

  • Broadbridge P., Knight J.H., Rogers C.: Constant rate rainfall infiltration in a bounded profile: solution of a nonlinear model. Soil Sci. Soc. Am. J. 52, 1526–1533 (1988)

    Google Scholar 

  • Caputo J.G., Stepanyants Y.A.: Front solutions on Richards’ equation. Transp. Porous Media 74, 1–20 (2008)

    Article  Google Scholar 

  • Celia M.A., Bouloutas E.T., Zarba L.R.: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26, 1483–1496 (1990)

    Google Scholar 

  • Durner W., Jansen U., Iden S.C.: Effective hydraulic properties of layered soils at the lysimeter scale determined by inverse modeling. Eur. J. Soil Sci. 59, 114–124 (2008)

    Google Scholar 

  • Eymard R., Gutnic M., Hilhorst D.: The finite volume method for Richards equation. Comput. Geosci. 3, 259–294 (1999)

    Article  Google Scholar 

  • Eymard R., Gallouet T., Gutnic M., Herbin R., Hilhorst D.: Numerical approximation of an elliptic- parabolic equation arising in environment. Comput. Vis. Sci. 3, 33–38 (2000)

    Article  Google Scholar 

  • Farthing M.W., Kees C.E., Coffey T.S., Kelley C.T., Miller C.T.: Efficient steady-state solution techniques for variably saturated groundwater flow. Adv. Water Resour. 26, 833–849 (2003)

    Article  Google Scholar 

  • Hackbusch W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)

    Google Scholar 

  • Haverkamp R., Vauclin M., Touma J., Wierenga P.J., Vachaud G.: A comparison of numerical simulation models for one-dimensional infiltration. Soil Sci. Soc. Am. J. 41, 285–294 (1977)

    Google Scholar 

  • Jager W., Kačur J.: Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO Model. Math. Anal. Numer. 29, 605–627 (1995)

    Google Scholar 

  • Kees, C.E., Farthing, M.W., Howington, S.E., Jenkins E.W., Kelley, C.T.: Nonlinear multilevel iterative methods for multiscale models of air/water flow in porous media. In: Proc. of Comput. Meth. In Water Resources XVI, Paper No. 148 (2006)

  • Lee H.S., Mathhews C.J., Braddock R.D., Sander G.C., Gandola F.: A MATLAB method of lines template for transport equations. Environ. Model. Softw. 19, 603–614 (2004)

    Article  Google Scholar 

  • Lehmann F., Ackerer P.H.: Comparison of iterative methods for improved solution of the fluid flow equation in partially saturated porous media. Transp. Porous Media 31, 275–292 (1998)

    Article  Google Scholar 

  • Lin, H.C., Richards, D.R., Yeh, G.T., Cheng, H.P., Jones, N.L.: FEMWATER: a three-dimensional finite element computer model for simulating density dependent flow and transport in variably saturated media. Report CHL-96-12, US Army Corps of Engineer, Vicksburg (1997)

  • Loudyi D., Falconer R.A., Lin B.: Mathematical development and verification of a non-orthogonal finite volume model for groundwater flow applications. Adv. Water Resour. 30, 29–42 (2007)

    Article  Google Scholar 

  • Manzini G., Ferraris S.: Mass-conservative finite volume methods on 2-D unstructured grids for the Richards equation. Adv. Water Resour. 27, 1199–1215 (2004)

    Article  Google Scholar 

  • McDonald, M.G., Harbaugh, A.W.: MODFLOW—a three-dimensional finite-difference ground-water flow model (2008). http://www.modflow.com

  • McKeon T.J., Chu W.-S.: A multigrid model for steady flow in partially saturated porous media. Water Resour. Res. 23, 542–550 (1987)

    Article  Google Scholar 

  • Menziani M., Pugnaghi S., Vicenzi S.: Analytical solutions of the linearized Richards equation for discrete, arbitrary initial and boundary conditions. J. Hydrol. 332, 214–225 (2007)

    Article  Google Scholar 

  • Paniconi C., Putti M.: A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems. Water Resour. Res. 30, 3357–3374 (1994)

    Article  Google Scholar 

  • Paniconi C., Aldama A.A., Wood E.F.: Numerical evaluation of iterative and noniterative methods for the solution of the nonlinear Richards equation. Water Resour. Res. 27, 1147–1163 (1991)

    Article  Google Scholar 

  • Philip J.R.: Theory of infiltration. Adv. Hydrosci. 5, 215–305 (1967)

    Google Scholar 

  • Pinder G.F., Gray W.G.: Finite Element Simulation in Surface and Subsurface Hydrology. Academic Press, New York (1977)

    Google Scholar 

  • Pop I.S.: Error estimates for a time discretization method for the Richards’ equation. Comput. Geosci. 6, 141–160 (2002)

    Article  Google Scholar 

  • Roth K.: Scaling of water flow through porous media and soils. Eur. J. Soil Sci. 59, 125–130 (2008)

    Article  Google Scholar 

  • Smith R.E., Smetten K.J., Broadbridge P., Woolhiser D.A.: Infiltration Theory for Hydrologic Applications. AGU, Washington, DC (2002)

    Google Scholar 

  • Stewart J.M., Broadbridge P.: Calculation of humidity during evaporation from soil. Adv. Water Resour. 22, 495–505 (1999)

    Article  Google Scholar 

  • Tocci M.D., Kelley C.T., Miller C.T., Kees C.E.: Inexact Newton methods and the method of lines for solving Richards’ equation in two space dimension. Comput. Geosci. 2, 291–309 (1998)

    Article  Google Scholar 

  • Van Genuchten M.T. predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • Wagner C.: Numerical methods for diffusion-reaction-transport processes in unsaturated porous media. Comput. Vis. Sci. 2, 97–104 (1998)

    Article  Google Scholar 

  • Wagner C., Kinzelbach W., Wittum G.: Schur-complement multigrid. A robust method for groundwater flow and transport problems. Numer. Math. 75, 523–545 (1997)

    Article  Google Scholar 

  • White I., Broadbridge P.: Constant rate rainfall infiltration: a versatile nonlinear model 2. Appl. Solut. Water Resour. Res. 24, 155–162 (1988)

    Article  Google Scholar 

  • Wilderotter O.: An adaptive numerical method for the Richards’ equation with root growth. Plant Soil 251, 255–267 (2003)

    Article  Google Scholar 

  • Woodward C.S., Dawson C.N.: Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J. Numer. Anal. 37, 701–724 (2000)

    Article  Google Scholar 

  • Yuan F., Lu Z.: Analytical solutions for water flow in unsaturated, rooted soils with variable surface fluxes. Vadose Zone J. 4, 1210–1218 (2005)

    Article  Google Scholar 

  • Zlotnik V.A., Wang T., Nieber J.L., Simunek J.: Verification of numerical solutions of the Richards equation using traveling wave solution. Adv. Water Resour. 30, 1973–1980 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gheorghe Juncu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juncu, G., Nicola, A. & Popa, C. Nonlinear Multigrid Methods for Numerical Solution of the Unsaturated Flow Equation in Two Space Dimensions. Transp Porous Med 83, 637–652 (2010). https://doi.org/10.1007/s11242-009-9465-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9465-3

Keywords

Navigation