Advertisement

Transport in Porous Media

, Volume 83, Issue 3, pp 437–464 | Cite as

Modeling Unsaturated Flow in Absorbent Swelling Porous Media: Part 1. Theory

  • Hans-Jörg G. Diersch
  • Volker Clausnitzer
  • Volodymyr Myrnyy
  • Rodrigo Rosati
  • Mattias Schmidt
  • Holger Beruda
  • Bruno J. Ehrnsperger
  • Raffaele Virgilio
Article

Abstract

The flow and deformation processes in swelling porous media are modeled for absorbent hygiene products (e.g., diapers, wipes, papers etc.). The first part of the article derives the fundamental equations for the hysteretic unsaturated flow, liquid absorption, and large deformation. The final set of model equations consists of balance equations of mobile and absorbed (immobile) liquid combined with a series of constitutive relationships. The resulting equation system is strongly nonlinear and requires advanced numerical strategies for solving. The second part of the article focuses on numerical solution and presents simulation results for 2D and 3D applications.

Keywords

Unsaturated flow Absorbent gelling material Swelling porous media Capillary hysteresis Diaper core flow modeling 

List of Symbols

Roman Letters

Ap

Solid–liquid interface area per REV, L2

Ap, total

Maximum solid–liquid interface area per REV, L2

asl(sl)

Saturation-dependent fraction of the solid–liquid interface area, 1

a

Solid displacement direction vector, 1

ai

Direction vector at node i, 1

ai

Spatial components of a, 1

B

Thickness, L

C

Stiffness tensor, ML−1 T−2

C

Intrinsic concentration, ML−3

\({\bar C}\)

Bulk concentration, M L−3

Ca

Pore constant, L−1

D/Dt

Material derivative, T−1

d

Strain vector, 1

ds

Volumetric solid strain, 1

e

 = −g/|g|, Gravitational unit vector, 1

f

External supply or function

G

Geometry constant, 1

g

Gravity vector, LT−2

g

 = |g|, Gravitational acceleration, LT−2

H

Surface tension head, L2

I

Identity tensor, 1

Js

Jacobian of solid domain, volume dilatation function, 1

j

Diffusive (nonadvective) flux vector, ML−2 T−1

K

Hydraulic conductivity tensor, L T−1

k

Permeability tensor, L2

kr

Relative permeability, 1

k+

Reaction rate constant, M−1L T−1

L

Gradient operator, L−1

L

Differential operator, ML−3 T−1

\({l_{i}^{\rm s}}\)

Side lengths of a small solid cuboid, L

M

Molar mass, M

m

Unit tensor, 1

m

Mass, M

m

VG curve fitting parameter, 1

\({m_{2}^{\rm s}}\)

AGM x-load, 1

\({\hat m_{2}^{\rm s}}\)

\({=(m_{2\max}^{\rm s} - m_{2}^{\rm s})/m_{2\max}^{\rm s}}\) , Normalized AGM x-load, 1

\({m_{2\max}^{\rm s}}\)

Maximum AGM x-load, 1

n

Pore size distribution index, 1

p

Pressure, ML−1 T−2

Q

Mass supply, ML−3 T−1

q

Volumetric Darcy flux, LT−1

R

Chemical reaction term, ML−3 T−1

R

Radius, L

r

Pore radius or distance, L

s

Saturation, 1

u

Solid displacement vector, placement transformation function, L

u

Scalar solid displacement norm, L

V

REV volume, L3

Vp

Pore volume, L3

v

Velocity vector, LT−1

x

Eulerian spatial coordinates, L

xi

Components of x, L

Greek Letters

α

VG curve fitting parameter, L−1

Γs

Closed boundary of solid control space Ωs, L2

γ

Liquid compressibility, M−1 LT2

\({\bar\gamma}\)

\({=\gamma \rho_{0}^{\rm l} g}\) , Specific liquid compressibility, L−1

γij

Shear strain component, 1

Δz

Vertical extent, L

δ

Exponential fitting parameter, 1

δij

\({=\left\{\begin{array}{ll}1,\, i=j\\ 0, i\neq j \end{array}\right.}\) Kronecker delta

\({\varepsilon}\)

Porosity, void space, 1

\({\varepsilon^{\alpha}}\)

Volume fraction of α-phase, 1

μ

Dynamic viscosity, ML−1 T−1

ρ

Density or intrinsic concentration, ML−3

σ

Solid stress tensor, ML−1 T−2

σ*

Liquid surface tension, ML−2 T−2

τ

AGM reaction (speed) rate constant, T−1

\({\phi^{\rm l}}\) , \({\phi^{\rm s}}\)

Deformation (sink/source) terms for liquid and solid, respectively, T−1, ML−1 T−1

ψl

Pressure head of liquid phase l, L

Ωs

Control space of porous solid or domain, L3

ωk

Mass fraction of species k, 1

ω

Reaction rate modifier, 1

Nabla (vector) operator (= grad), L−1

i

 = ∂/∂ x i , Partial differentiation with respect to x i

Subscripts

AGMraw

Available AGM in reaction

AGMconsumed

Consumed AGM in reaction

AGM

AGM

c

Capillary

e

Effective or elemental

H2O

Water

I

Material Lagrangian coordinate, ranging from 1 to 3

i, j

Spatial Eulerian coordinate, ranging from 1 to 3, or nodal indices

k

Species indicator

L → S

AGM absorbed liquid

0

Reference, initial or dry

p

Pore

r

Residual, reactive or relative

Superscripts

α

Phase indicator

D

Number of space dimension

g

Gas phase

l

Liquid phase

s

Solid phase

T

Transpose

Abbreviations

AGM

Absorbent gelling material

CM

Inert carrier material

REV

Representative elementary volume

RHS

Right-hand side

SAP

Superabsorbent polymer

VG

van Genuchten

[. . .]

Chemical activity, molar bulk concentration

() · ()

Vector dot (scalar) product

() ⊗ ()

Tensor (dyadic) product

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai M., Elsworth D. (2000) Coupled Processes in Subsurface Deformation, Flow, and Transport. ASCE Press, Reston, VAGoogle Scholar
  2. Bear J., Bachmat Y. (1991) Introduction to Modeling of Transport Phenomena in Porous Media, 1st edn. Springer Netherland, BerlinGoogle Scholar
  3. Coussy O. (1995) Mechanics of Porous Continua. Wiley, ChichesterGoogle Scholar
  4. De Boer R. (2000) Theory of Porous Media: Highlights in Historical Development and Current State. Springer, BerlinGoogle Scholar
  5. DHI-WASY: Feflow Finite Element Subsurface Flow and Transport Simulation System - Users Manual/Reference Manual/White Papers. Recent Release 5.4. Technical Report. DHI-Wasy GmbH, Berlin (2008)Google Scholar
  6. Kolditz O. (2002) Computational Methods in Environmental Fluid Mechanics. Graduate Text Book. Springer Science Publisher, BerlinGoogle Scholar
  7. Lewis R.W., Schrefler B.A. (1998) The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, ChichesterGoogle Scholar
  8. Pinder G.F., Gray W.G. (2008) Essentials of Multiphase Flow and Transport in Porous Media. Wiley, Hoboken NJCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hans-Jörg G. Diersch
    • 1
  • Volker Clausnitzer
    • 1
  • Volodymyr Myrnyy
    • 1
  • Rodrigo Rosati
    • 2
  • Mattias Schmidt
    • 2
  • Holger Beruda
    • 2
  • Bruno J. Ehrnsperger
    • 2
  • Raffaele Virgilio
    • 3
  1. 1.DHI-Wasy GmbHBerlinGermany
  2. 2.Procter & Gamble Service GmbHSchwalbach am TaunusGermany
  3. 3.Procter & Gamble Services Company SAStrombeek-BeverBelgium

Personalised recommendations