Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Transport in Porous Media
  3. Article
A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Derivation of a Petrophysical Model for Contact Angle Based on PURCELL’S Equation and CO2-Sandstone Brine System Calculation for Core flooding Wettability Preservation

21 November 2020

Mumuni Amadu & Adango Miadonye

Modelling garnet-fluid partitioning in H2O-bearing systems: a preliminary statistical attempt to extend the crystal lattice-strain theory to hydrous systems

30 July 2020

Amit Meltzer & Ronit Kessel

Validation and Recalibration of the Solubility Models in Support of the Heater Test in Salt Formations

01 January 2020

Yongliang Xiong, Kris Kuhlman, … Yifeng Wang

MafiCH: a general model for H2O–CO2 solubility in mafic magmas

19 March 2022

Chelsea M. Allison, Kurt Roggensack & Amanda B. Clarke

Thermodynamic Model of the Fluid System H2O–CO2–NaCl at P-T Parameters of the Middle and Lower Crust

01 January 2021

M. V. Ivanov & S. A. Bushmin

Thermodynamic Modeling Study on Phase Equilibrium of Gas Hydrate Systems for CO2 Capture

08 November 2019

Ahmad Banafi, Mohamad Mohamadi-Baghmolaei, … Amir Abbas Izadpanah

Calculation of the Phase Equilibrium of CO2–Hydrocarbon Binary Mixtures by PR-BM EOS and PR EOS

20 April 2019

Chuanyan Li, Yahui Gao, … Peisheng Ma

Effect of CO2 Injection on the Multiphase Flow Properties of Reservoir Rock

04 March 2023

Kiseok Kim, Patrick M. Kundzicz & Roman Y. Makhnenko

Equations of State for NaCl and CaCl2 Solutions of Arbitrary Concentration at Temperatures 423.15–623.15 K and Pressures up to 5 kbar

01 August 2018

M. V. Ivanov, S. A. Bushmin & L. Y. Aranovich

Download PDF
  • Open Access
  • Published: 17 July 2009

A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems

  • Nicolas Spycher1 &
  • Karsten Pruess1 

Transport in Porous Media volume 82, pages 173–196 (2010)Cite this article

  • 2843 Accesses

  • 192 Citations

  • Metrics details

Abstract

Correlations are presented to compute the mutual solubilities of CO2 and chloride brines at temperatures 12–300°C, pressures 1–600 bar (0.1–60 MPa), and salinities 0–6 m NaCl. The formulation is computationally efficient and primarily intended for numerical simulations of CO2-water flow in carbon sequestration and geothermal studies. The phase-partitioning model relies on experimental data from literature for phase partitioning between CO2 and NaCl brines, and extends the previously published correlations to higher temperatures. The model relies on activity coefficients for the H2O-rich (aqueous) phase and fugacity coefficients for the CO2-rich phase. Activity coefficients are treated using a Margules expression for CO2 in pure water, and a Pitzer expression for salting-out effects. Fugacity coefficients are computed using a modified Redlich–Kwong equation of state and mixing rules that incorporate asymmetric binary interaction parameters. Parameters for the calculation of activity and fugacity coefficients were fitted to published solubility data over the P–T range of interest. In doing so, mutual solubilities and gas-phase volumetric data are typically reproduced within the scatter of the available data. An example of multiphase flow simulation implementing the mutual solubility model is presented for the case of a hypothetical, enhanced geothermal system where CO2 is used as the heat extraction fluid. In this simulation, dry supercritical CO2 at 20°C is injected into a 200°C hot-water reservoir. Results show that the injected CO2 displaces the formation water relatively quickly, but that the produced CO2 contains significant water for long periods of time. The amount of water in the CO2 could have implications for reactivity with reservoir rocks and engineered materials.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Audigane P., Gaus I., Czernichowski-Lauriol I., Pruess K., Xu T.: Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the sleipner site, North Sea. Am. J. Sci. 307, 974–1008 (2007)

    Article  Google Scholar 

  • Bachu S., Bennion B.: Effects of in-situ conditions on relative permeability characteristics of CO2-brine systems. Environ. Geol. 54(8), 1707–1752 (2008)

    Article  Google Scholar 

  • Bando S., Takemura F., Nishio M., Hihara E., Akai M.: Solubility of CO2 in aqueous solutions of NaCl at 30 to 60°C and 10 to 20 MPa. J. Chem. Eng. Data 48, 576–579 (2003)

    Article  Google Scholar 

  • Blencoe J.G., Naney M.T., Anovitz L.: The CO2–H2O system: III. A new experimental method for determining liquid-vapor equilibria at high supercritical temperatures. Am. Mineral. 86, 1100–1111 (2001)

    Google Scholar 

  • Brown, D.W.: A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. Proceedings, twenty-fifth workshop on geothermal reservoir engineering, Stanford University, January 2000, pp. 233–238

  • Carlson H., Colburn A.P.: Vapor-liquid equilibria of nonideal solutions: utilization of theoretical methods to extend data. Ind. Eng. Chem. 34, 581–589 (1942)

    Article  Google Scholar 

  • Chiquet P., Daridon J.L., Broseta D., Thibeau S.: CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage. Energy Convers. Manage. 48, 736–744 (2007)

    Article  Google Scholar 

  • Coan C.R., King A.D. Jr: Solubility of water in compressed carbon dioxide, nitrous oxide, and ethane. Evidence for hydration of carbon dioxide and nitrous oxide in the gas phase. J. Am. Chem. Soc. 93, 1857–1862 (1971)

    Article  Google Scholar 

  • Corey, A.T.: The interrelation between gas and oil relative permeabilities. Producers Monthly, pp. 38–41, November 1954

  • Cramer, S.D.: The solubility of methane, carbon dioxide, and oxygen in brines from 0 to 300°C. Report of investigations 8706, U.S. Department of the Interior, Bureau of Mines (1982)

  • Denbigh, K.: The principles of chemical equilibrium, 4th ed. Cambridge University Press, 494 pp. (1983)

  • Doherty, J.: PEST—model-independent parameter estimation. Watermark Numerical Computing, Corinda 4075, Brisbane, Australia (2008) http://www.sspa.com/pest/

  • Drummond, S.E.: Boiling and mixing of hydrothermal fluids: chemical effects on mineral precipitation. Ph.D. thesis, Pennsylvania State University (1981)

  • Duan Z., Sun R.: An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 257 to 533 K and from 0 to 2000 bar. Chem. Geol. 193, 257–271 (2003)

    Article  Google Scholar 

  • Gilfillan S.M.V., Ballentine C.J., Holland G., Blagburn D., Sherwood Lollar B., Stevens S., Schoell M., Cassidy M.: The noble gas geochemisry of natural CO2 gas reservoirs from the Coloradeau Plateau and Rocky Montain provinces, USA. Geochimica et Cosmochimica Acta 72, 1174–1198 (2008)

    Article  Google Scholar 

  • Fenghour A., Wakeham W.A., Watson J.T.R.: Densities of (water + carbon dioxide) in the temperature range 415 K to 700 K and pressures up to 35 MPa. J. CHem. Thermodynamics 28, 433–446 (1996)

    Article  Google Scholar 

  • Fouillac, C., Sanjuan, B., Gentier, S., Czernichowski-Lauriol, I.: Could sequestration of CO2 be combined with the development of enhanced geothermal systems? In: Paper presented at the Third Annual Conference on Carbon Capture and Sequestration, Alexandria, Virginia, May 3–6, 2004

  • Gehrig M., Lentz H., Frank E.U.: The system water-carbon dioxide-sodium chloride to 773 K and 300 MPa. Ber. Bunsenges. Phys. Chem. 90, 525–533 (1986)

    Google Scholar 

  • Gérard A., Genter A., Kohl T., Lutz P., Rose P., Rummel F.: The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forets (Alsace, France). Geothermics 35(5-6), 473–483 (2006)

    Article  Google Scholar 

  • Gillepsie, P.C., Wilson, G.M.: Vapor-liquid and liquid-liquid equilibria: water-methane, water-carbon dioxide, water-hydrogen sulfide, water-npentane, water-methane-npentane. Research report RR-48, Gas Processors Association, Tulsa Okla, April (1982)

  • Giorgis T., Carpita T., Batistelli A.: 2D modeling of salt precipitation during injection of dry CO2 in a depleted gas reservoir. Energy Conserv. Manage. 48, 1816–1826 (2007)

    Article  Google Scholar 

  • Goyal K.: Injection recovery factors in various areas of the Southeast Geysers, California. Geothermics 24, 167–186 (1995)

    Article  Google Scholar 

  • Hurter S., Labregere D., Berge J.: Simulations of dry-out and halite precipitation due to CO2 injection. Geochimica et Cosmochimica Acta 71, A426–A426 (2007)

    Google Scholar 

  • Hu J., Duan Z., Zhu C., Chou I.-M.: PVTx properties of the CO2–H2O and CO2–H2O-NaCl systems below 647 K: assessment of experimental data and thermodynamic models. Chem. Geol. 238, 249–267 (2007)

    Article  Google Scholar 

  • IPCC: Carbon dioxide capture and storage In: Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L. (eds.) Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, 431 pp. (2005)

  • IPCC: Climate change 2007: synthesis report. Contributions of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change. In: Core Writing Team, Pachauri, R.K., Reisinger, A. (eds.) Intergovernmental Panel on Climate Change, c/o World Meteorological Organization, Geneva, Switzerland, 104 pp. (2008)

  • Kaszuba, J.P., Janecky, D.R., Snow, M.G.: Carbon dioxide sequestration processes in a model brine aquifer at 200°C and 200 bars: implications for geologic sequestration of carbon. Applied Geochemistry 18:1065–1080 (2003)

    Google Scholar 

  • Kiepe J., Horstmann S., Fisher K., Gmehling J.: Experimental determination and prediction of gas solubility data for CO2 + H2O mixtures containing NaCl or KCl at temperatures between 313 and 393 K and pressures up to 10 MPa. Ind. Eng. Chem. Res. 41, 4393–4398 (2003)

    Article  Google Scholar 

  • Koschel D., Coxam J.-Y., Rodier L., Majer V.: Enthalpy and solubility of CO2 in water and NaCl(aq) at conditions of interest for geological sequestration. Fluid Phase Equilibria 247, 107–120 (2006)

    Article  Google Scholar 

  • Lin H., Fujii T., Takisawa R., Takahashi T., Hashida T.: Experimental evaluation of interactions in supercritical CO2/water/rock mineral system under geologic CO2 sequestration conditions. J. Mater. Sci. 43, 2307–2315 (2008)

    Article  Google Scholar 

  • Malinin S.D., Kurovskaya N.A.: Investigations of CO2 solubility in a solution of chlorides at elevated temperatures and pressures of CO2. Geokhimiya 4, 547–551 (1975)

    Google Scholar 

  • Malinin S.D., Savelyeva N.I.: The solubility of CO2 in NaCl and CaCl2 solutions at 25, 50, and 75°C under elevated CO2 pressures. Geokhimiya 6, 643–653 (1972)

    Google Scholar 

  • Malinin S.D.: The system water-carbon dioxide at high temperatures and pressures. Geokhimiya 3, 235–245 (1959)

    Google Scholar 

  • Markham A.E., Kobe K.A.: The solubility of carbon dioxide and nitrous oxide in aqueous salt solutions. J. Am. Chem. Soc. 63, 449–454 (1941)

    Article  Google Scholar 

  • Müller G., Bender E., Maurer G.: Das Dampf-Flüssigkeitsgleichgewicht des ternären Systems Ammoniak-Kohlendioxid-Wasser bei hohen Wassergehalten im Bereich zwischen 373 und 473 Kelvin. Berichte der Bunsen-Gesellshaft für Physikalische Chemie 92, 148–160 (1988)

    Google Scholar 

  • MIT (ed.): The Future of Geothermal Energy. (Massachusetts Institute of Technology, Cambridge,MA 2006)

  • Moore J., Allis R., Allis R., Lutz S., Rauzi S.: Mineralogical and geochemical consequences for the long-term presence of CO2 in natural reservoirs: an example from the Spingville-St. Johns Field, Arizona, and New Mexico, U.S.A.. Chem. Geol. 217, 365–385 (2005)

    Article  Google Scholar 

  • Nickalls R.W.D.: A new approach to solving the cubic: Cardan’s solution revealed. Math. Gaz. 77, 354–359 (1993)

    Article  Google Scholar 

  • Nighswander J.A., Kalogerakis N., Mehotra A.K.: Solubilities of carbon dioxide in water and 1 wt% NaCl solution at pressures up to 10 MPa and temperatures from 80 to 200°C. C. J. Chem. Eng. Data 34, 355–360 (1989)

    Article  Google Scholar 

  • Orbey, H., Sandler, S.I.: Modeling Vapor-Liquid Equilibria: Cubic Equations of State and their Mixing Rules. Cambridge University Press (1998)

  • Palandri J., Rosenbauer R.J., Kharaka Y.K.: Ferric iron in sediments as a novel CO2 mineral trap: CO2–SO 2 reaction with hematite. Appl. Geochem. 20, 2038–2048 (2005)

    Article  Google Scholar 

  • Panagiotopoulos, A.Z., Reid, R.C.: New mixing rules for cubic equations of state for highly polar asymmetric mixtures. ACS Symposium Series 300: American Chemical Society, Washington, D.C., pp. 571–582 (1986)

  • Pruess K.: Numerical simulation of multiphase tracer transport in fractured geothermal reservoirs. Geothermics 31, 475–499 (2002)

    Article  Google Scholar 

  • Pruess K.: The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J. 3, 738–746 (2004)

    Article  Google Scholar 

  • Pruess K.: Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35(4), 351–367 (2006)

    Article  Google Scholar 

  • Pruess K.: On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers. Manage. 49, 1446–1454 (2008)

    Article  Google Scholar 

  • Pruess K., Narasimhan T.N.: A practical method for modeling fluid and heat flow in fractured porous media. Soc. Pet. Eng. J. 25(1), 14–26 (1985)

    Google Scholar 

  • Pruess K., Spycher N.: ECO2N—a fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers. Energy Convers. Manage. 48(6), 1761–1767 (2007)

    Article  Google Scholar 

  • Pruess, K., Müller, N.: Formation dry-out from CO2 injection into saline aquifers: 1. Effects of solids precipitation and their mitigation. Water Resour. Res. 45, W03402, doi:10.1029/2008WR007101 (2009)

  • Prutton C.F., Savage R.L.: The solubility of carbon dioxide in calcium chloride-water solutions at 75, 100, 120°C and high pressures. J. Am. Chem. Soc. 67, 1550–1554 (1945)

    Article  Google Scholar 

  • Regnault O., Lagneau V., Catalette H., Schneider H.: Etude expérimentale de la réactivité du CO2 supercritique vis-à-vis de phases minérales pures Implications pour la séquestration géologique de CO2. Comptes Rendus Geosci. 337, 1331–1339 (2005)

    Article  Google Scholar 

  • Rimmelé G., Barlet-Gouédard V., Porcherie O., Goffé B., Brunet F.: Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids. Cem. Concr. Res. 38, 1038–1048 (2008)

    Article  Google Scholar 

  • Rosenbauer R.J., Koksalan T., Palandri J.L.: Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers. Fuel Process. Technol. 86, 1581–1597 (2005)

    Article  Google Scholar 

  • Rumpf B., Nicolaisen H., Ocal C., Maurer G.: Solubility of carbon dioxide in aqueous solutions of sodium chloride: experimental results and correlation. J. Solut. Chem. 23, 431–448 (1994)

    Article  Google Scholar 

  • Sako T., Sugeta T., Nakazawa N., Obuko T., Sato M., Taguchi T., Hiaki T.: Phase equilibrium study of extraction and concentration of furfural produced in reactor using supercritical carbon dioxide. J. Chem. Eng. Jpn. 24, 449–454 (1991)

    Article  Google Scholar 

  • Shagiakhmetov, R.A., Tarzimanov, A.A.: Deposited document SPSTL 200 khp-D 81-1982 (1981). Summarized in: Sharlin, P.: Carbon Dioxide in Water and Aqueous Electrolyte Solutions. Solubility Data Series, vol. 62, 383 pp. International Union of Pure and Applied Chemistry, Oxford University Press (1996)

  • Span R., Wagner W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25(6), 1509–1596 (1996)

    Google Scholar 

  • Spycher N., Pruess K.: Mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12–100° C and up to 600 bar. Geochimica et Cosmochimica Acta 69, 3309–3320 (2005)

    Article  Google Scholar 

  • Spycher N., Pruess K., Ennis-King J.: CO2–H2O Mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar. Geochimica et Cosmochimica Acta 67, 3015–3031 (2003)

    Article  Google Scholar 

  • Stark, M.A., Box, W.T. Jr., Beall, J.J., Goyal, K.P., Pingol, A.S.: The Santa Rosa–Geysers recharge project, Geysers geothermal field, California, USA. Proceedings, file 2420.pdf, World Geothermal Congress, Antalya, Turkey, April 2005

  • Suto Y., Liu L., Yamasaki N., Hashida T.: Initial behavior of granite in response to injection of CO2-saturated fluid. Appl. Geochem. 22, 202–218 (2007)

    Article  Google Scholar 

  • Takenouchi S., Kennedy G.C.: The binary system H2O–CO2 at high temperatures and pressures. Am. J. Sci. 262, 1055–1074 (1964)

    Google Scholar 

  • Takenouchi S., Kennedy G.C.: The solubility of carbon dioxide in NaCl solutions at high temperatures and pressures. Am. J. Sci. 263, 445–454 (1965)

    Google Scholar 

  • Tödheide K., Frank E.U.: Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxid-Wasser bis zu Drucken von 3500 bar. Z. Phys. Chemie, Neue Folge 37, 387–401 (1963)

    Google Scholar 

  • van Genuchten M.Th.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • Vorholz J., Harismiadis V.I., Rumpf B., Panagiotopoulos A.Z., Maurer G.: Vapor + liquid equilibrium of water, carbon dioxide, and the binary system, water + carbon dioxide, from molecular simulation. Fluid Phase Equilibria 170, 203–234 (2000)

    Article  Google Scholar 

  • Wagner W., Pruss A.: The IAPW formulation 1995 for the thermodynamic properties of ordinary water substance for general scientific use. J. Phys. Ref. Data 31, 387–535 (2002)

    Article  Google Scholar 

  • Webb S.W.: A simple extension of two-phase characteristic curves to include the dry region. Water Resour. Res. 36(6), 1425–1430 (2000)

    Article  Google Scholar 

  • Wiebe R., Gaddy V.L.: The solubility in water of carbon dioxide at 50, 75, and 100°, at pressures to 700 atmospheres. J. Am. Chem. Soc. 61, 315–318 (1939)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Matthew Reagan for an internal review of this article, as well as to David Kaszuba and two other anonymous reviewers for their review comments. This study was supported by Contractor Supporting Research (CSR) funding from Berkeley Lab, provided by the Director, Office of Science, and by the Zero Emission Research and Technology project (ZERT) under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Lawrence Berkeley National Laboratory, MS 90-1116, 1 Cyclotron Road, Berkeley, CA, USA

    Nicolas Spycher & Karsten Pruess

Authors
  1. Nicolas Spycher
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Karsten Pruess
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Nicolas Spycher.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Spycher, N., Pruess, K. A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems. Transp Porous Med 82, 173–196 (2010). https://doi.org/10.1007/s11242-009-9425-y

Download citation

  • Received: 08 December 2008

  • Accepted: 01 June 2009

  • Published: 17 July 2009

  • Issue Date: March 2010

  • DOI: https://doi.org/10.1007/s11242-009-9425-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • CO2
  • Carbon dioxide
  • Solubility
  • Phase partitioning
  • Mutual solubility
  • Enhanced Geothermal System
  • EGS
  • Brine
  • Water Flow
  • Multiphase Flow
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.