Skip to main content
Log in

Turbulent Flow Around Fluid–Porous Interfaces Computed with a Diffusion-Jump Model for k and ε Transport Equations

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Flow over vegetation and bottom of rivers can be characterized by some sort of porous structure of irregular surface through which a fluid permeates. Also, in engineering systems, one can have components that make use of a working fluid flowing over irregular layers of porous material. This article presents numerical solutions for such hybrid medium, considering here a channel partially filled with a flat porous layer saturated by a fluid flowing in turbulent regime. One unique set of transport equations is applied to both the regions. A diffusion-jump model for both the turbulent kinetic energy and its dissipation rate, across the interface, is presented and discussed upon. The discretization steps taken for numerically accommodating such model in the system of algebraic equations are presented. Numerical results show the effects of Reynolds number, porosity, and permeability on mean and turbulence fields. Results indicate that when negative values for the stress jump coefficient are applied, the peak of the turbulent kinetic energy distribution occurs at the macroscopic interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c F :

Forchheimer coefficient

c 1, c 2, c k , c μ :

Constant in turbulence model

D :

Deformation rate tensor, \({{\bf D}={[\nabla {\bf u}+(\nabla {\bf u})^{\rm T}]}/2}\)

G i :

Production rate of k due to the porous matrix, \({G^{\rm i}={c_k \rho \phi \langle k\rangle ^{\rm i}{\kern 1pt}|{\kern 1pt}{\bf \overline{u}}_{\rm D} |}/{\sqrt{K}}}\)

H :

Distance between the channel walls

I :

Unit tensor

k :

Turbulent kinetic energy per unit mass, \({k={\overline {{\bf {u}'}{\kern 1pt}\cdot {\bf {u}'}}}/2}\)

\({\langle k\rangle ^{\rm v}}\) :

Volume (fluid + solid) average of k

\({\langle k\rangle ^{\rm i}}\) :

Intrinsic (fluid) average of k

K :

Permeability

L :

Axial length of periodic section of channel

p :

Thermodynamic pressure

\({\langle p\rangle ^{\rm i}}\) :

Intrinsic (fluid) average of pressure p

P i :

Production rate of k due to mean gradients of \({{\bf \overline {\bf u}}_{\rm D}}\), \({P^{\rm i}=-\rho \langle \overline {{\bf {u}'}{\bf {u}'}} \rangle ^{\rm i}:\nabla {\bf \overline{{u}}}_{\rm D} }\)

\({{\bf \overline{{R}}}}\) :

Time average of total drag per unit volume

Re H :

Reynolds number based on the channel height, \({Re_{\rm H} ={\rho \left| {{\bf \overline{{u}}}_{\rm D}}\right|H}/\mu }\)

s :

Clearance for unobstructed flow

\({S_\varphi}\) :

Source term

\({{\bf \overline{{u}}}}\) :

Microscopic time-averaged velocity vector

\({\langle {\bf \overline{{u}}}\rangle ^{\rm i}}\) :

Intrinsic (fluid) average of \({\overline {\bf u} }\)

\({{{\bf \overline{{u}}}_{\rm D}} }\) :

Darcy velocity vector, \({{{\bf \overline{{u}}}_{\rm D}} = \phi \left\langle {\overline {\bf u}}\right\rangle ^{\rm i}}\)

\({{{\bf \overline{u}}_{\rm D}}_{\rm i}}\) :

Darcy velocity vector at the interface

\({{{\bf \overline{{u}}}_{\rm D}}_{\rm p} }\) :

Darcy velocity vector parallel to the interface

u D n, u D p :

Components of Darcy velocity at interface along η (normal) and ξ (parallel) directions, respectively.

u D i, v D i :

Components of Darcy velocity at interface along x and y, respectively

x, y :

Cartesian coordinates

β, β t :

Interface stress jump coefficient for mean and turbulent flow fields, respectively

μ :

Fluid dynamic viscosity

μ eff :

Effective viscosity for a porous medium

\({{\mu _{\rm t}}_\phi }\) :

Macroscopic turbulent viscosity

ε :

Dissipation rate of \({k, \varepsilon={\mu \overline {\nabla {\bf {u}'} :(\nabla {\bf {u}'})^{\rm T}}}/\rho }\)

\({\langle \varepsilon \rangle ^{\rm i}}\) :

Intrinsic (fluid) average of ε

ρ :

Density

\({\phi}\) :

Porosity

\({{\varphi}}\) :

General dependent variable

η, ξ :

Generalized coordinates

σ k , σ ε :

Turbulent Prandtl numbers for k and ε, respectively.

References

  • Assato M., Pedras M.H.J., de Lemos M.J.S.: Numerical solution of turbulent channel flow past a backward-facing step with a porous insert using linear and nonlinear kε models. J. Porous Media 8(1), 13–29 (2005). doi:10.1615/JPorMedia.v8.i1.20

    Article  Google Scholar 

  • Braga E.J., de Lemos M.J.S.: Turbulent natural convection in a porous square cavity computed with a macroscopic k-ε model. Int. J. Heat Mass Transf. 47(26), 5639–5650 (2004). doi:10.1016/j.ijheatmasstransfer.2004.07.017

    Article  Google Scholar 

  • Breugem, W.P., Boersma, B.J.: Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17(2), (2005) doi:10.1063/1.1835771

  • de Lemos M.J.S.: Fundamentals of the double—decomposition concept for turbulent transport in permeable media. Materialwiss. Werkstofftech. 36(10), 586–593 (2005a). doi:10.1002/mawe.200500910

    Article  Google Scholar 

  • de Lemos M.J.S.: Turbulent kinetic energy distribution across the interface between a porous medium and a clear region. Int. Comm. Heat Mass Transf. 32(1–2), 107–115 (2005b). doi:10.1016/j.icheatmasstransfer.2004.06.011

    Google Scholar 

  • de Lemos M.J.S.: Turbulence in Porous Media: Modeling and Applications. Elsevier, Kindlington (2006)

    Google Scholar 

  • de Lemos M.J.S.: Analysis of turbulent flows in fixed and moving permeable media. Acta Geophys. 56(3), 562–583 (2008). doi:10.2478/s11600-008-0026-x

    Article  Google Scholar 

  • de Lemos M.J.S., Braga E.J.: Modeling of turbulent natural convection in saturated rigid porous media. Int. Comm. Heat Mass Transf. 30(5), 615–624 (2003). doi:10.1016/S0735-1933(03)00099-X

    Article  Google Scholar 

  • de Lemos M.J.S., Mesquita M.S.: Turbulent mass transport in saturated rigid porous media. Int. Comm. Heat Mass Transf. 30(1), 105–113 (2003). doi:10.1016/S0735-1933(03)00012-5

    Article  Google Scholar 

  • de Lemos, M.J.S., Pedras, M.H.J.: Simulation of turbulent flow through hybrid porous medium-clear fluid domains. In: Proceedings of IMECE2000 - ASME - International Mechanical Engineering Congress, ASME-HTD-366-5, ISBN 0-7918-1908-6, pp. 113–122. Orlando, Florida (2000)

  • de Lemos M.J.S., Pedras M.H.J.: Recent mathematical models for turbulent flow in saturated rigid porous media. ASME. J. Fluids Eng. 123(4), 935–940 (2001). doi:10.1115/1.1413243

    Article  Google Scholar 

  • de Lemos, M.J.S., Silva, R.A.: Turbulent flow around a wavy interface between a porous medium and a clear domain. In: Proceedings of ASME-FEDSM2003- Fluids Engineering Division Summer Meeting, Paper FEDSM2003-45457 (on CD-ROM), Honolulu, Hawaii, USA, 6–11 July 2003

  • de Lemos M.J.S., Tofaneli L.A.: Modeling of double-diffusive turbulent natural convection in porous media. Int. J. Heat Mass Transf. 47(19–20), 4221–4231 (2004)

    Google Scholar 

  • Finnigan J.: Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519–571 (2000). doi:10.1146/annurev.fluid.32.1.519

    Article  Google Scholar 

  • Gray W.G., Lee P.C.Y.: On the theorems for local volume averaging of multiphase system. Int. J. Multiph. Flow 3, 333–340 (1977). doi:10.1016/0301-9322(77)90013-1

    Article  Google Scholar 

  • Hoffmann M.R.: Application of a simple space-time averaged porous media model to flow in densely vegetated channels. J. Porous Media 7(3), 183–191 (2004). doi:10.1615/JPorMedia.v7.i3.30

    Article  Google Scholar 

  • Kuznetsov A.V.: Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Int. J. Heat Fluid Flow 12, 269–272 (1996)

    Google Scholar 

  • Kuznetsov A.V.: Influence of the stresses jump condition at the porous-medium/clear-fluid interface on a flow at a porous wall. Int. Comm. Heat Mass Transf. 24, 401–410 (1997). doi:10.1016/S0735-1933(97)00025-0

    Article  Google Scholar 

  • Kuznetsov A.V.: Fluid mechanics and heat transfer in the interface region between a porous medium and a fluid layer: a boundary layer solution. J. Porous Media 2(3), 309–321 (1999)

    Google Scholar 

  • Kuznetsov A.V.: Numerical modeling of turbulent flow in a composite porous/fluid duct utilizing a two-layer k–ε model to account for interface roughness. Int. J. Therm. Sci. 43(11), 1047–1056 (2004). doi:10.1016/j.ijthermalsci.2004.02.011

    Article  Google Scholar 

  • Lane S.N., Hardy R.J.: Porous rivers: a new way of conceptualizing and modeling river and floodplain flows?. In: Ingham, D., Pop, I. (eds) Transport Phenomena in Porous Media II, Chapt. 16, 1st edn, pp. 425–449. Pergamon Press, NY (2002)

    Google Scholar 

  • Launder B.E., Spalding D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974). doi:10.1016/0045-7825(74)90029-2

    Article  Google Scholar 

  • Lee, K., Howell, J.R.: Forced convective and radiative transfer within a highly porous layer exposed to a turbulent external flow field. In: Proceedings of the 1987 ASME-JSME Thermal Engineering Joint Conference, vol. 2, pp. 377–386 (1987)

  • Nepf H., Ghisalberti M.: Flow and transport in channels with submerged vegetation. Acta Geophys. 56(3), 753–777 (2008). doi:10.2478/s11600-008-0017-y

    Article  Google Scholar 

  • Ochoa-Tapia J.A., Whitaker S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995a). doi:10.1016/0017-9310(94)00346-W

    Article  Google Scholar 

  • Ochoa-Tapia J.A., Whitaker S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment. Int. J. Heat Mass Transf. 38, 2647–2655 (1995b). doi:10.1016/0017-9310(94)00347-X

    Article  Google Scholar 

  • Patankar S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, New York (1980)

    Google Scholar 

  • Pedras M.H.J., de Lemos M.J.S.: On the definition of turbulent kinetic energy for flow in porous media. Int. Comm. Heat Mass Trans. 27(2), 211–220 (2000)

    Article  Google Scholar 

  • Pedras M.H.J., de Lemos M.J.S.: Macroscopic turbulence modeling for incompressible flow through undeformable porous media. Int. J. Heat Mass Transf. 44(6), 1081–1093 (2001a). doi:10.1016/S0017-9310(00)00202-7

    Article  Google Scholar 

  • Pedras M.H.J., de Lemos M.J.S.: Simulation of turbulent flow in porous media using a spatially periodic array and a low re two-equation closure. Numer. Heat Transf. Part A Appl. 39(1), 35–59 (2001b)

    Article  Google Scholar 

  • Pedras M.H.J., de Lemos M.J.S.: On mathematical description and simulation of turbulent flow in a porous medium formed by an array of elliptic rods. ASME. J. Fluids Eng. 123(4), 941–947 (2001c). doi:10.1115/1.1413244

    Article  Google Scholar 

  • Pedras M.H.J., de Lemos M.J.S.: Computation Of turbulent flow in porous media using a low reynolds kε model and an infinite array of transversally-displaced elliptic rods. Numer. Heat Transf. Part A Appl. 43(6), 585–602 (2003)

    Article  Google Scholar 

  • Poggi D., Katul G.G.: An experimental investigation of the mean momentum budget inside dense canopies on narrow gentle hilly terrain. Agric. For. Meteorol. 144, 1–13 (2007). doi:10.1016/j.agrformet.2007.01.009

    Article  Google Scholar 

  • Prinos P., Sofialidis D., Keramaris E.: Turbulent flow over and within a porous bed. J. Hydraul. Eng. 129(9), 720–733 (2003). doi:10.1061/(ASCE)0733-9429(2003)129:9(720)

    Article  Google Scholar 

  • Prithiviraj M., Andrews M.J.: Three-dimensional numerical simulation of shell-and-tube heat exchanger part I—foundation and fluid mechanics. Numer. Heat Transf. Part A—Appl. 33, 799–816 (1998)

    Article  Google Scholar 

  • Raupach M.R., Shaw R.H.: Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol. 22, 79–90 (1982). doi:10.1007/BF00128057

    Article  Google Scholar 

  • Rocamora F.D. Jr., de Lemos M.J.S.: Analysis of convective heat transfer for turbulent flow in saturated porous media. Int. Comm. Heat Mass Transf. 27(6), 825–834 (2000a). doi:10.1016/S0735-1933(00)00163-9

    Article  Google Scholar 

  • Rocamora, F.D., Jr., de Lemos, M.J.S.: Laminar recirculating flow and heat transfer in hybrid porous medium-clear fluid computational domains. In: Proceedings of 34th ASME-National Heat Transfer Conference (on CD-ROM), ASME-HTD-I463CD, Paper NHTC2000-12317, ISBN 0-7918-1997-3, Pittsburgh, PA (2000b)

  • Sha W.T.: A new porous-media approach for thermal-hydraulic analysis. Trans. ANS 39, 510–512 (1981)

    Google Scholar 

  • Silva R.A., de Lemos M.J.S.: Numerical analysis of the stress jump interface condition for laminar flow over a porous layer. Numer. Heat Transf. Part A Appl. 43(6), 603–617 (2003a)

    Article  Google Scholar 

  • Silva R.A., de Lemos M.J.S.: Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transf. 46(26), 5113–5121 (2003b). doi:10.1016/S0017-9310(03)00368-5

    Article  Google Scholar 

  • Silva, R.A., de Lemos, M.J.S.: Laminar flow around a sinusoidal interface between a porous medium and a clear fluid. In: Proceedings of COBEM2003 - 17th International Congress of Mechanical Engineering, Paper 1528 (on CD-ROM), São Paulo, Brazil, 10–14 Nov 2003

  • Whitaker S.: Advances in theory of fluid motion in porous media. Ind. Eng. Chem. 61, 14–28 (1969). doi:10.1021/ie50720a004

    Article  Google Scholar 

  • White B., Nepf H.M.: Scalar transport in random cylinder arrays at moderate Reynolds number. J. Fluid Mech. 487, 43–79 (2003). doi:10.1017/S0022112003004579

    Article  Google Scholar 

  • Zhou X.Y., Pereira J.C.F.: A multidimensional model for simulating vegetation fire spread using a porous media sub-model. Fire Mater. 24, 37–43 (2000). doi:10.1002/(SICI)1099-1018(200001/02)24:1<37::AID-FAM718>3.0.CO;2-Q

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo J. S. De Lemos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lemos, M.J.S. Turbulent Flow Around Fluid–Porous Interfaces Computed with a Diffusion-Jump Model for k and ε Transport Equations. Transp Porous Med 78, 331–346 (2009). https://doi.org/10.1007/s11242-009-9379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9379-0

Keywords

Navigation