Skip to main content
Log in

Large Eddy Simulation of Turbulent Flow Through Submerged Vegetation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Large Eddy Simulations (LES) are performed for an open channel flow through idealized submerged vegetation with a water depth (h) to plant height (h p) ratio of h/h p = 1.5 according to the experimental configuration of Liu et al. (J Geophys Res Earth Sci, 2008). They used a 1D laser Doppler velocimeter (LDV) to measure longitudinal and vertical velocities as well as turbulence intensities along several verticals in the flow and the data are used for the validation of the present simulations. The code MGLET is used to solve the filtered Navier–Stokes equations on a Cartesian non-uniform grid. In order to represent solid objects in the flow, the immersed boundary method is employed. The computational domain is idealized with a box containing 16 submerged circular cylinders and periodic boundary conditions are applied in both longitudinal and transverse directions. The predicted streamwise as well as vertical mean velocities are in good agreement with the LDV measurements. Furthermore, fairly good agreement is found between calculated and measured streamwise and vertical turbulence intensities. Large-scale flow structures of different shapes are present in the form of vortex rolls above the vegetation tops as well as locally generated trailing and von- Karman-type vortices due to flow separation at the free end and the sides of the cylinders. In this paper, the flow field is analyzed statistically and evidence is provided for the existence of these structures based on the LES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Choi, S.-U., Kang, H.: Reynolds stress modeling of vegetated open channel flows. In: XXIX IAHR Congress Conference Proceedings, vol. 1, pp. 264–269, Beijing, China, Theme D (2001)

  • Cui, J., Neary, V.S.: Large eddy simulation (LES) of fully developed flow through vegetation. In: IAHR’s 5th International Conference on Hydroinformatics, Cardiff, UK, 1–5 July 2002

  • Dunn, C., Lopez, F., Garcia, M.H.: Mean flow and turbulence in a laboratory channel with simulated vegetation. Hydraulic Engineering Series No. 51, UILU-ENG-96-2009, UIUC, Urbana, USA (1996)

  • Dwyer M.J., Patton E.G., Shaw R.H.: Turbulent kinetic energy budgets from a Large-Eddy Simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol. 1, 23–44 (1997). doi:10.1023/A:1000301303543

    Article  Google Scholar 

  • Fairbanks, J.D., Diplas, P.: Turbulence characteristics of flows through partially and fully submerged vegetation. In: Wetlands Engineering and River Restoration Conference, Denver, Colorado, USA, 22–27 March 1998

  • Finnigan J.: Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519–571 (2000). doi:10.1146/annurev.fluid.32.1.519

    Article  Google Scholar 

  • Fischer Antze T., Stoesser T., Bates P.B., Olsen N.R.: 3D numerical modelling of open-channel flow with submerged vegetation. IAHR J. Hydraul. Res. 39, 303–310 (2001)

    Article  Google Scholar 

  • Germano M., Piomelli U., Moin P., Cabot W.: A dynamic subgrid scale eddy viscosity model. Phys. Fluids A 3, 1760 (1991). doi:10.1063/1.857955

    Article  Google Scholar 

  • Ghisalberti M., Nepf H.M.: Mixing layers and coherent structures in vegetated aquatic flows. J. Geophys. Res. 107(C2), 3–1311 (2002)

    Article  Google Scholar 

  • Ghisalberti M., Nepf H.M.: The structure of the shear layer in flows over rigid and flexible canopies. Environ. Fluid Mech. 6, 277–301 (2006). doi:10.1007/s10652-006-0002-4

    Article  Google Scholar 

  • Ikeda S., Kanazawa M.: Three-dimensional organized vortices above flexible water plants. J. Hydraul. Eng. 122, 634–640 (1996). doi:10.1061/(ASCE)0733-9429(1996)122:11(634)

    Article  Google Scholar 

  • Kanda M., Hino M.: Organized structures in developing turbulent flow within and above a plant canopy, using a LES. Boundary-Layer Meteorol. 68, 237–257 (1994). doi:10.1007/BF00705599

    Article  Google Scholar 

  • Kouwen N.M., Unny T.E., Hill H.M.: Flow retardance in vegetated channels. J. Irrig. Drain. Div. 95, 329–342 (1969)

    Google Scholar 

  • Kouwen N.M., Unny T.E.: Flexible roughness in open channel. J. Hydraul. Div. ASCE 99(5), 713–728 (1973)

    Google Scholar 

  • Kouwen N., Fathi-Moghadam M.: Friction factors for coniferous trees along rivers. J. Hydraul. Eng. 126(10), 732–740 (2000). doi:10.1061/(ASCE)0733-9429(2000)126:10(732)

    Article  Google Scholar 

  • Liu D., Diplas P., Fairbanks J.D, Hodges C.C. (2000). An experimental study of flow through rigid vegetation. J. Geophys. Res. Earth Sci. 113, 1–16. doi:10.1029/2008JF001042

    Google Scholar 

  • Lopez F., Garcia M.: Mean flow and turbulence structure of open-channel flow through non-emergent vegetation. J. Hydraul. Eng. 127(5), 392–402 (2001). doi:10.1061/(ASCE)0733-9429(2001)127:5(392)

    Article  Google Scholar 

  • Moeng C.H.: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 2052–2062 (1984). doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2

    Article  Google Scholar 

  • Naot D., Nezu I., Nakagawa H.: Hydrodynamic behavior of partly vegetated open-channels. ASCE J. Hydraul. Eng. 122(11), 625–633 (1996). doi:10.1061/(ASCE)0733-9429(1996)122:11(625)

    Article  Google Scholar 

  • Neary V.S.: Numerical solution of fully-developed flow with vegetative resistance. J. Eng. Mech. 129(5), 558–563 (2003). doi:10.1061/(ASCE)0733-9399(2003)129:5(558)

    Article  Google Scholar 

  • Nepf H.M.: Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. AGU. 35(2), 479–489 (1999). doi:10.1029/1998WR900069

    Article  Google Scholar 

  • Nepf H.M., Vivoni E.R.: Flow structure in depth-limited, vegetated flow. J. Geophys. Res. 105(C12), 28457–28557 (2000). doi:10.1029/2000JC900145

    Article  Google Scholar 

  • Nezu I., Onitsuka K.: Turbulent structures in partly vegetated open-channel flows with LDA and PIV measurements. J. Hydraul. Res. 39(6), 629–642 (2001)

    Google Scholar 

  • Palau, G.P., Stoesser, T., Rummel, A., Rodi, W.: Turbulent shallow flow through emergent vegetation. In: ICEH: International Conference on Ecohydraulics. Tempe, Arizona (2007)

  • Pasche E., Rouve G.: Overbank flow with vegetatively roughened flood plains. ASCE J. Hydraul. Eng. 111(9), 1262–1278 (1995)

    Article  Google Scholar 

  • Raupach M.R., Finnigan J.J., Brunet Y.: Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78, 351–382 (1996). doi:10.1007/BF00120941

    Article  Google Scholar 

  • Shaw R.H., Schumann U.: Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol. 61(1–2), 47–64 (1992). doi:10.1007/BF02033994

    Article  Google Scholar 

  • Shimizu Y., Tsujimoto T.: Numerical analysis of turbulent open-channel flow over vegetation layer using a k-turbulence model. J. Hydrosci. Hydraul. Eng. JSCE 11(2), 57–67 (1994)

    Google Scholar 

  • Smagorinsky J.: General circulation experiments with the primitive equations, Part I: The basic experiment. Mon. Weather Rev. 91, 99–152 (1963). doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

    Article  Google Scholar 

  • Stoesser, T., Liang, C., Rodi, W., Jirka, G.H.: Large eddy simulation of fully-developed turbulent flow through submerged vegetation. In: Riverflow (2006)

  • Stone H.L.: Iterative solution of implicit approximation of multi-dimensional partial differential equations. SIAM J. Numer. Anal. 5(3), 530–558 (1968)

    Article  Google Scholar 

  • Stone B.M., Shen H.T.: Hydraulic resistance of flow in channels with cylindrical roughness. J. Hydraul. Eng. 128(5), 500–506 (2002). doi:10.1061/(ASCE)0733-9429(2002)128:5(500)

    Article  Google Scholar 

  • Tremblay, F., Manhart, M., Friedrich, R.: LES of flow around a circular cylinder at a subcritical Reynolds number. In: EUROMECH Colloquium 412, Munich, Germany, 4–6 October 2000

  • Tsujimoto, T., Kitamura, T.: Velocity profile of flow in vegetated-bed channels. KHL Progressive Report (1990)

  • Verzicco R., Mohd-Yusof J., Orlandi P., Haworth D.: Large eddy simulation in complex geometric configurations using boundary body forces. AIAA J. 38(3), 427–433 (2000). doi:10.2514/2.1001

    Article  Google Scholar 

  • Wilson C.A.M.E., Stoesser T., Bates P.D., Batemann-Prinzen A.: Open channel flow through different forms of submerged flexible vegetation. ASCE J. Hydraul. Eng. 129, 847–853 (2003)

    Article  Google Scholar 

  • Wu F.C., Shen H.W., Chou Y.J.: Variation of roughness coefficients for unsubmerged and submerged vegetation. ASCE J. Hydraul. Eng. 125(9), 934–942 (2000). doi:10.1061/(ASCE)0733-9429(1999)125:9(934)

    Article  Google Scholar 

  • Zang Y., Street R.L., Koseff J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5, 3186–3196 (1993). doi:10.1063/1.858675

    Article  Google Scholar 

  • Zdravkovich M.M.: The effects of interference between circular cylinders in cross flow. J. Fluids Struct. 1, 239–261 (1987). doi:10.1016/S0889-9746(87)90355-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Stoesser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoesser, T., Salvador, G.P., Rodi, W. et al. Large Eddy Simulation of Turbulent Flow Through Submerged Vegetation. Transp Porous Med 78, 347–365 (2009). https://doi.org/10.1007/s11242-009-9371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9371-8

Keywords

Navigation