Advertisement

Transport in Porous Media

, Volume 80, Issue 2, pp 345–371 | Cite as

Analysis of Laminar Flow and Forced Convection Heat Transfer in a Porous Medium

  • Fethi KamışlıEmail author
Article

Abstract

The flow of an incompressible Newtonian fluid confined in a planar geometry with different wall temperatures filled with a homogenous and isotropic porous medium is analyzed in terms of determining the unsteady state and steady state velocities, the temperature and the entropy generation rate as function of the pressure drop, the Darcy number, and the Brinkman number. The one-dimensional approximate equation in the rectangular Cartesian coordinates governing the flow of a Newtonian fluid through porous medium is derived by accounting for the order of magnitude of terms as well as accompanying approximations to the full-blown three-dimensional equations by using scaling arguments. The one-dimensional approximate energy and the entropy equations with the viscous dissipation consisting of the velocity gradient and the square of velocity are derived by following the same procedure used in the derivation of velocity expressions. The one-dimensional approximate equations for the velocity, the temperature, and the entropy generation rate are analytically solved to determine the velocity, the temperature, and the entropy distributions in the saturated porous medium as functions of the effective process parameters. It is found that the pressure drop, the Darcy number, and the Brinkman number affect the temperature distribution in the similar way, and besides the above parameters, the irreversibility distribution ratio also affects the entropy generation rate in the similar way.

Keywords

Porous medium Darcy number Entropy generation Viscous dissipation Forced convection 

List of Symbols

Variables

Br

Brinkman number=Ec Pr

Cp

Specific heat (J kg−1 · K−1)

Pr

Prandtl number=C p /k

Ec

Eckert number = \({u_{m}^{2}}/{Cp\Delta T}\)

Da

Darcy number K/h 2

F

Empirical coefficient

Fri

Froude number \({{u_{0}^{1}}/{hg_i}}\)

h

Half transverse distance (m)

gi

Gravity in i-direction

kf

Thermal conductivity (W · m−1 · K−1)

K

Permeability (m 2)

Characteristic length in the x-direction (m)

NDB

Entropy generation number, Darcy–Brinkman dissipation = Bru 2/ΩDa

NF

Entropy generation number, velocity gradient dissipation = Br(∂u/∂y)2/Ω

NS

Entropy generation number, total

NY

Entropy generation number, conduction = (∂θ/∂ y)2

P

Dimensionless pressure \({={\tilde{P}}/ \left({\mu u_0}\ell/{h^2}\right)}\)

P0

Dimensionless pressure gradient dP/dx

Re

Cross-flow Reynolds number = ρu 0 h

SG

Entropy generation rate (W · m−3 · K−1)

SG,C

Characteristic entropy transfer rate

t

Dimensionless time \({={\tilde {t}}/{\left({{h^{2}\rho}/\mu}\right)}}\)

T

Temperature (K)

T0

Reference temperature (K)

T1

Temperature at the lower plate (K)

T2

Temperature at the upper plate (K)

\({\tilde {u}}\)

Velocity in x-direction (m · s−1)

u0

Characteristic velocity (m · s−1)

\({\tilde{v}}\)

Velocity in y-direction (m · s−1)

v0

Characteristic velocity in y-direction (m · s−1)

\({\tilde {w}}\)

Velocity in z-direction (m · s−1)

u, v, w

Dimensionless velocities

\({\tilde{x}}\)

Axial direction

\({\tilde{y}}\)

Transverse direction

\({\tilde{z}}\)

Normal to the x-direction

x, y, z

Dimensionless directions

Greek Symbols

θ

Dimensionless temperature

Ω

Dimensionless temperature difference = ΔT/T 0

\({\Phi}\)

Total viscous dissipation

μ

Dynamic viscosity (Pa · s)

ρ

Density of the fluid (kg · m−3)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Hadhrami A.K., Elliot L., Ingham D.B.: A new model for viscous dissipation in porous media across a range of permeability values. Transp. Porous Media 53, 117–122 (2003). doi: 10.1023/A:1023557332542 CrossRefGoogle Scholar
  2. Bejan A.: A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 101, 718–725 (1979)Google Scholar
  3. Bejan A.: Convective Heat Transfer. Wiley, New York (1984)Google Scholar
  4. Bejan A., Dincer I., Lorente S., Miguel A.F., Reis A.H.: Porous and Complex Flow Structures in Modern Technologies. Springer, New York (2004)Google Scholar
  5. Denn M.M.: Process Fluid Mechanics. Prentice-Hall, New Jersey (1980)Google Scholar
  6. Fang T.: Further discussion on the incompressible pressure-driven flow in a channel with porous walls. Int. Comm. Heat Mass Transf. 31, 487–500 (2004). doi: 10.1016/S0735-1933(04)00030-2 CrossRefGoogle Scholar
  7. Haji-Sheikh A., Vafai K.: Analysis of flow and heat transfer in porous media imbedded inside various shaped ducts. Int. J. Heat Mass Transf. 47, 1889–1905 (2004). doi: 10.1016/j.ijheatmasstransfer.2003.09.030 CrossRefGoogle Scholar
  8. Haji-Sheikh A., Nield D.A., Hooman K.: Heat transfer in the thermal entrance region for flow through rectangular porous passages. Int. J. Heat Mass Transf. 49, 3004–3015 (2006). doi: 10.1016/j.ijheatmasstransfer.2006.01.040 CrossRefGoogle Scholar
  9. Hooman K., Haji-Sheikh A.: Analysis of heat transfer and entropy generation for a thermally developing Brinkman-forced convection problem in rectangular duct with isoflux walls. Int. J. Heat Mass Transf. 50, 4180–4194 (2007). doi: 10.1016/j.ijheatmasstransfer.2007.02.036 CrossRefGoogle Scholar
  10. Hooman K., Gurgenci H., Merrikh A.A.: Heat transfer and entropy generation optimization of forced convection in porous-saturated ducts of rectangular cross-section. Int. J. Heat Mass Transf. 50, 2051–2059 (2007). doi: 10.1016/j.ijheatmasstransfer.2006.11.015 CrossRefGoogle Scholar
  11. Ingham D.B., Pop I.: Transport Phenomena in Porous Media III. Elsevier, Oxford (2005)Google Scholar
  12. Kamışlı F.: Pressure-driven laminar flow of a non-Newtonian fluid in a slit with wall suction or injection. Chem. Eng. Process. 47, 585–595 (2008). doi: 10.1016/j.cep.2006.11.012 Google Scholar
  13. Kaviany M.: Laminar flow through a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transf. 28, 851–858 (1985)CrossRefGoogle Scholar
  14. Mahmud S., Fraser R.A.: Flow, thermal and entropy generation characteristics inside a porous channel with viscous dissipation. Int. J. Therm. Sci. 44, 21–32 (2005). doi: 10.1016/j.ijthermalsci.2004.05.001 CrossRefGoogle Scholar
  15. Mitrovic J., Maletic B.: Heat transfer with laminar flow forced convection in a porous channel exposed to a thermal asymmetry. Int. J. Heat Mass Transf. 50, 1106–1121 (2007). doi: 10.1016/j.ijheatmasstransfer.2006.06.046 CrossRefGoogle Scholar
  16. Mohammad A.A.: Heat transfer enhancement in heat exchangers fitted with porous media. Part, I.: constant wall temperature. Int. J. Therm. Sci. 42, 385–395 (2003). doi: 10.1016/S1290-0729(02)00039-X Google Scholar
  17. Morosuk T.V.: Entropy generation in conduits filled with porous medium totally and partially. Int. J. Heat Mass Transf. 48, 2548–2560 (2005). doi: 10.1016/j.ijheatmasstransfer.2005.01.018 CrossRefGoogle Scholar
  18. Nield D.A.: Resolution of a paradox involving viscous dissipation and nonlinear drag in a porous medium. Transp. Porous Media 41, 349–357 (2000)CrossRefGoogle Scholar
  19. Nield D.A., Bejan A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)Google Scholar
  20. Nield D.A., Junqueira S.L.M., Lage J.L.: Forced convection in a fluid-saturated porousmedium channel with isothermal or isoflux boundaries. J. Fluid Mech. 322, 201–214 (1996). doi: 10.1017/S0022112096002765 CrossRefGoogle Scholar
  21. Nield D.A., Kuznetsov A.V., Xiong M.: Thermally developing forced convection in a porous medium: parallel plate channel with walls at uniform temperature, with axial conduction and viscous dissipation effects. Int. J. Heat Mass Transf. 46, 643–651 (2003)CrossRefGoogle Scholar
  22. Pop I., Ingham D.B.: Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media. Pergamon, Oxford (2001)Google Scholar
  23. Schlicting, H., Gersten, K.: Boundary Layer Theory. 8th Revised and Enlarged edn. (English). Springer-Verlag, New York (2000)Google Scholar
  24. Vafai K.: Handbook of Porous Media, 2nd edn. Taylor & Francis, New York (2005)Google Scholar
  25. Vafai K., Kim S.J.: Forced convection in a channel filled with a porous medium: an exact solution. ASME J. Heat Transf. 111, 1103–1106 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Chemical EngineeringFirat UniversityElazigTurkey

Personalised recommendations