Transport in Porous Media

, 80:269 | Cite as

Hydrodynamic Characterization of Nickel Metal Foam, Part 1: Single-Phase Permeability

  • Shuichiro Miwa
  • Shripad T. RevankarEmail author


This article presents results of the investigation of the fluid dynamic behavior in CVD processed nickel metal foams. An experimental facility was developed to measure the single-phase permeability in nickel metal foams in Darcian flow regime. Data on permeability values of seven different nickel foam samples was obtained. The pore sizes of the foam were obtained with scanning electron microscope. By defining friction factor and Reynolds number based on the permeability length scale a correlation was obtained for the foam permeability in Darcian flow regime. The result from this study was compared with the correlations reported by other researchers, and was found to be in good agreement.


Porous material Nickel foam Permeability Fuel cell materials Darcy flow 


  1. Arisetty S., Prasad A.K., Advani S.G.: Metal foams as flow field and gas diffusion layer in direct methanol fuel cells. J. Power Sources 165, 49–57 (2007). doi: 10.1016/j.jpowsour.2006.12.008 CrossRefGoogle Scholar
  2. Banhart J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559–632 (2001). doi: 10.1016/S0079-6425(00)00002-5 CrossRefGoogle Scholar
  3. Bhattacharya A., Calmidi A.A., Mahajan R.L.: Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45, 1017–1031 (2002). doi: 10.1016/S0017-9310(01)00220-4 CrossRefGoogle Scholar
  4. Bonnet J.P., Topin F., Tadrist L.: Flow laws in metal foams: compressibility and pore size effects. Transp. Porous Media 73, 233–254 (2008). doi: 10.1007/s11242-007-9169-5 CrossRefGoogle Scholar
  5. Boomsma K., Poulikakos D.: The effects of compression and pore size variations on the liquid flow characteristics in metal foams. ASME J. Fluids Eng. 124, 263–272 (2002). doi: 10.1115/1.1429637 CrossRefGoogle Scholar
  6. Despois J.F., Mortensen A.: Permeability of open-pore microcellular materials. Acta Mater. 53, 1381–1388 (2005). doi: 10.1016/j.actamat.2004.11.031 CrossRefGoogle Scholar
  7. Du Plessis J.P., Montillet A., Comiti J., Legrand J.: Pressure drop prediction for flow through high porosity metallic foams. Chem. Eng. Sci. 49, 3545–3553 (1994). doi: 10.1016/0009-2509(94)00170-7 CrossRefGoogle Scholar
  8. Dukhan N., Picon-Feliciano R., Alvarez-Hernandez A.R.: Air flow through compressed and uncompressed aluminum foam: measurements and correlations. ASME J. Fluids Eng. 128, 1004–1012 (2006). doi: 10.1115/1.2236132 CrossRefGoogle Scholar
  9. Dullien F.A.L.: Porous Media: Fluid Transport and Pore Structure. Academic Press, New York (1979)Google Scholar
  10. DuPlessis J.P., Diedericks J.P.: Pore-scale modelling of interstitial transport phenomena. In: Du Plessis, J.P. (eds) Fluid Transport in Porous Media, pp. 61–104. Computational Mechanics Publications, Southampton (1997)Google Scholar
  11. Hamaguchi K., Takahashi S., Miyabe H.: Pressure drop and heat transfer characteristics of regenerator matrix (in Japanese). JSME. Nippon Kakaigakkai Ranbunshu 49, 1991–1999 (1983)Google Scholar
  12. Hwang J.J., Hwang G.J., Yeh R.H., Chao C.H.: Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams. ASME J. Heat Transf. 124, 120–129 (2002). doi: 10.1115/1.1416690 CrossRefGoogle Scholar
  13. Khayargoli, P., Loya, V., Lefebvre, L.-P., Medraj, M.: The impact of microstructure on the permeability of metal foams. In: Proc. CSME Forum, pp. 220–228, London, Canada (2004)Google Scholar
  14. Krishnan S., Murthy J.Y., Garimella S.V.: Direct simulation of transport in open-cell metal foam. ASME J. Heat Trans. 128, 793–799 (2006). doi: 10.1115/1.2227038 CrossRefGoogle Scholar
  15. Kumar A., Reddy R.G.: Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates. J. Power Sources 114, 54–62 (2003). doi: 10.1016/S0378-7753(02)00540-2 CrossRefGoogle Scholar
  16. Kumar A., Reddy R.G.: Materials and design development for bipolar/end plates in fuel cells. J. Power Sources 129, 62–67 (2004). doi: 10.1016/j.jpowsour.2003.11.011 CrossRefGoogle Scholar
  17. Lage J.L., Antohe B.V.: Darcy’s experiments and the deviation to nonlinear flow regime. ASME J. Fluids Eng. 122, 619–625 (2000). doi: 10.1115/1.1287722 CrossRefGoogle Scholar
  18. Madani, B., Topin, F., Rigollet, F., Tadrist, L.: Flow laws in metallic foams: experimental determination of inertial and viscous contributions. J. Porous Media (2007). doi:  10.1615/JPorMedia.v10.i1.40
  19. Moreira E.A., Innocentini M.D.M., Coury J.R.: Permeability of ceramic foams to compressible and incompressible flow. J. Eur. Ceram. Soc. 24, 3209–3218 (2004). doi: 10.1016/j.jeurceramsoc.2003.11.014 CrossRefGoogle Scholar
  20. Oppenheimer S.M., Dunand D.C.: Finite element modeling of creep deformation in cellular metals. Acta Mater. 55, 3825–3834 (2007). doi: 10.1016/j.actamat.2007.02.033 CrossRefGoogle Scholar
  21. Paek J.W., Kim B.H., Kim S.Y., Hyun J.M.: Effective thermal conductivity and permeability of aluminum foam materials. Int. J. Thermophys. 21, 453–464 (2000). doi: 10.1023/A:1006643815323 CrossRefGoogle Scholar
  22. Richardson J.T., Remue D., Peng Y.: Properties of ceramic foam catalyst supports: pressure drop. Appl. Catal. 204, 19–32 (2000). doi: 10.1016/S0926-860X(00)00508-1 CrossRefGoogle Scholar
  23. Scheidegger A.E.: The Physics of Flow Through Porous Media. University of Toronto Press, Toronto (1960)Google Scholar
  24. Stemmet C.P., van der Schaaf M.M.J., Kuster B.F.M., Schouten J.C.: Hydrodynamics of gas–liquid counter-current flow in solid foam packings. Chem. Eng. Sci. 60, 6422–6429 (2005). doi: 10.1016/j.ces.2005.03.027 CrossRefGoogle Scholar
  25. Stemmet C.P., van der Schaaf M.M.J., Kuster B.F.M., Schouten J.C.: Solid foam packings for multiphase reactors modelling of liquid holdup and mass transfer. Chem. Eng. Res. Des. 84, 1134–1141 (2006). doi: 10.1205/cherd05034 CrossRefGoogle Scholar
  26. Stemmet C.P., van der Schaaf M.M.J., Kuster B.F.M., Schouten J.C.: Gas–liquid mass transfer and axial dispersion in solid foam packings. Chem. Eng. Sci. 62, 5444–5450 (2007). doi: 10.1016/j.ces.2007.02.016 CrossRefGoogle Scholar
  27. Vafai K., Tien C.L.: Boundary and inertia effects on convective mass transfer in porous media. Int. J. Heat Mass Transf. 25, 1183–1190 (1980). doi: 10.1016/0017-9310(82)90212-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Multiphase and Fuel Cell Research Laboratory, School of Nuclear EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations