Skip to main content
Log in

Impact of Capillary-Driven Liquid Films on Salt Crystallization

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Flow-through drying of ionic liquids in porous media can lead to super saturation and hence crystallization of salts. A model for the evolution of solid and liquid concentrations of salt, in porous media, due to evaporation by gas flow is presented. The model takes into account the impact of capillary-driven liquid film flow on the evaporation rates as well as the rate of transport of salt through those films. It is shown that at high capillary wicking numbers and high dimensionless pressure drops, supersaturation of brine takes place in the higher drying rate regions in the porous medium. This leads to solid salt crystallization and accumulation in the higher drying rate region. In the absence of wicking, there is no transport and accumulation of solid salt. Results from experiments of flow-through drying in rock cores are compared with model prediction of salt crystallization and accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Corey A.T.: Mechanics of Heterogeneous Fluids in Porous Media. Water Resources Publications, Fort Collins, Colorado (1977)

    Google Scholar 

  • Mahadevan J., Sharma M.M., Yortsos Y.C.: Flow through drying of porous media. Am Inst Chem Eng J—AIChE J 52(7), 2367–2380 (2006)

    Google Scholar 

  • Mahadevan J., Sharma M.M., Yortsos Y.C.: Water removal from porous media by gas injection: experiments and simulation. Transp. Porous Media J. 66, 287–309 (2007)

    Article  Google Scholar 

  • Prat M.: Isothermal drying of non-hygroscopic capillary-porous materials as an invasion percolation process. Int. J. Multiph. Flow 21(5), 875–892 (1995). doi:10.1016/0301-9322(95)00022-P

    Article  Google Scholar 

  • Prat M.: Recent advances in pore-scale models for drying of porous media. Chem. Eng. J. 86, 153–164 (2002). doi:10.1016/S1385-8947(01)00283-2

    Article  Google Scholar 

  • Prat M.: On the influence of pore shape, contact angle and film flows on drying of capillary porous media. Int. J. Heat Mass Transf. 50, 1455–1468 (2007). doi:10.1016/j.ijheatmasstransfer.2006.09.001

    Article  Google Scholar 

  • Prat M., Bouleux F.: Drying of capillary porous media with a stabilized front in two dimensions. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(5), 5647–5656 (1999). doi:10.1103/PhysRevE.60.5647

    Google Scholar 

  • Puyate Y.T., Lawrence C.J.: Wick action at moderate Peclet number. Phys. Fluids 10(3), 2114–2116 (1998). doi:10.1063/1.869729

    Article  Google Scholar 

  • Puyate Y.T., Lawrence C.J.: Steady state solutions for chloride distribution due to wick action in concrete. Chem. Eng. Sci. 55, 3329–3334 (2000). doi:10.1016/S0009-2509(99)00566-7

    Article  Google Scholar 

  • Puyate Y.T., Lawrence C.J., Buenfeld N.R., McLoughlin I.M.: Chloride transport models for wick action in concrete at large Peclet number. Phys. Fluids 10(3), 566–575 (1998). doi:10.1063/1.869584

    Article  Google Scholar 

  • Scherer G.W.: Crystallization in pores. Cem. Concr. Res. 29, 1347–1358 (1999). doi:10.1016/S0008-8846(99)00002-2

    Article  Google Scholar 

  • Shaw T.M.: Drying as an immiscible displacement process with fluid counterflow. Phys. Rev. Lett. 59(15), 1671–1675 (1987). doi:10.1103/PhysRevLett.59.1671

    Article  Google Scholar 

  • Sghaier N., Prat M., Ben Nasrallah S.: On ions transport during drying in a porous medium. Transp. Porous Media J. 67, 243–274 (2007). doi:10.1007/s11242-006-9007-1

    Article  Google Scholar 

  • Tsypkin, G.G.: Accumulation and precipitation of salts during groundwater evaporation and flow. Fluid Dyn 38(6), 900–907 (2003). Translated Izv. Ross. Academii Nauk Mekh. Zhidkosti Gaza 6, 84–93 (2003)

  • Tsypkin, G.G.: Two-valued solutions in the problem of salt crystallization during groundwater evaporation. Fluid Dyn 40(4), 593–599 (2005). Translated Izv. Ross. Academii Nauk Mekh. Zhidkosti Gaza 4, 105–112 (2005)

  • Tsypkin G.G., Caloreb C.: Role of capillary forces in vapour extraction from low-permeability, water-saturated geothermal reservoirs. Geothermics 32, 219–237 (2003). doi:10.1016/S0375-6505(03)00018-X

    Article  Google Scholar 

  • Yiotis A.G., Boudouvis A.G., Stubos A.K., Tsimpanogiannis I.N., Yortsos Y.C.: Effect of liquid films on the isothermal drying of porous media. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(3), 037303.1–037303.4 (2003)

    Google Scholar 

  • Yiotis A.G., Boudouvis A.G., Stubos A.K., Tsimpanogiannis I.N., Yortsos Y.C.: The effect of liquid films on the drying of porous media. Am. Inst. Chem. Eng. J. 50(11), 2721–2737 (2004)

    Google Scholar 

  • Yortsos Y.C., Stubos A.K.: Phase change in porous media. Curr. Opin. Colloid Interface Sci. 6, 208–216 (2001). doi:10.1016/S1359-0294(01)00085-1

    Article  Google Scholar 

  • van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagannathan Mahadevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, D., Hoang, H. & Mahadevan, J. Impact of Capillary-Driven Liquid Films on Salt Crystallization. Transp Porous Med 80, 229–252 (2009). https://doi.org/10.1007/s11242-009-9353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9353-x

Keywords

Navigation