Transport in Porous Media

, 80:229 | Cite as

Impact of Capillary-Driven Liquid Films on Salt Crystallization

  • Duc Le
  • Hai Hoang
  • Jagannathan MahadevanEmail author


Flow-through drying of ionic liquids in porous media can lead to super saturation and hence crystallization of salts. A model for the evolution of solid and liquid concentrations of salt, in porous media, due to evaporation by gas flow is presented. The model takes into account the impact of capillary-driven liquid film flow on the evaporation rates as well as the rate of transport of salt through those films. It is shown that at high capillary wicking numbers and high dimensionless pressure drops, supersaturation of brine takes place in the higher drying rate regions in the porous medium. This leads to solid salt crystallization and accumulation in the higher drying rate region. In the absence of wicking, there is no transport and accumulation of solid salt. Results from experiments of flow-through drying in rock cores are compared with model prediction of salt crystallization and accumulation.


Evaporation Capillary wicking Porous media Gas flow Crystallization 


  1. Corey A.T.: Mechanics of Heterogeneous Fluids in Porous Media. Water Resources Publications, Fort Collins, Colorado (1977)Google Scholar
  2. Mahadevan J., Sharma M.M., Yortsos Y.C.: Flow through drying of porous media. Am Inst Chem Eng J—AIChE J 52(7), 2367–2380 (2006)Google Scholar
  3. Mahadevan J., Sharma M.M., Yortsos Y.C.: Water removal from porous media by gas injection: experiments and simulation. Transp. Porous Media J. 66, 287–309 (2007)CrossRefGoogle Scholar
  4. Prat M.: Isothermal drying of non-hygroscopic capillary-porous materials as an invasion percolation process. Int. J. Multiph. Flow 21(5), 875–892 (1995). doi: 10.1016/0301-9322(95)00022-P CrossRefGoogle Scholar
  5. Prat M.: Recent advances in pore-scale models for drying of porous media. Chem. Eng. J. 86, 153–164 (2002). doi: 10.1016/S1385-8947(01)00283-2 CrossRefGoogle Scholar
  6. Prat M.: On the influence of pore shape, contact angle and film flows on drying of capillary porous media. Int. J. Heat Mass Transf. 50, 1455–1468 (2007). doi: 10.1016/j.ijheatmasstransfer.2006.09.001 CrossRefGoogle Scholar
  7. Prat M., Bouleux F.: Drying of capillary porous media with a stabilized front in two dimensions. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(5), 5647–5656 (1999). doi: 10.1103/PhysRevE.60.5647 Google Scholar
  8. Puyate Y.T., Lawrence C.J.: Wick action at moderate Peclet number. Phys. Fluids 10(3), 2114–2116 (1998). doi: 10.1063/1.869729 CrossRefGoogle Scholar
  9. Puyate Y.T., Lawrence C.J.: Steady state solutions for chloride distribution due to wick action in concrete. Chem. Eng. Sci. 55, 3329–3334 (2000). doi: 10.1016/S0009-2509(99)00566-7 CrossRefGoogle Scholar
  10. Puyate Y.T., Lawrence C.J., Buenfeld N.R., McLoughlin I.M.: Chloride transport models for wick action in concrete at large Peclet number. Phys. Fluids 10(3), 566–575 (1998). doi: 10.1063/1.869584 CrossRefGoogle Scholar
  11. Scherer G.W.: Crystallization in pores. Cem. Concr. Res. 29, 1347–1358 (1999). doi: 10.1016/S0008-8846(99)00002-2 CrossRefGoogle Scholar
  12. Shaw T.M.: Drying as an immiscible displacement process with fluid counterflow. Phys. Rev. Lett. 59(15), 1671–1675 (1987). doi: 10.1103/PhysRevLett.59.1671 CrossRefGoogle Scholar
  13. Sghaier N., Prat M., Ben Nasrallah S.: On ions transport during drying in a porous medium. Transp. Porous Media J. 67, 243–274 (2007). doi: 10.1007/s11242-006-9007-1 CrossRefGoogle Scholar
  14. Tsypkin, G.G.: Accumulation and precipitation of salts during groundwater evaporation and flow. Fluid Dyn 38(6), 900–907 (2003). Translated Izv. Ross. Academii Nauk Mekh. Zhidkosti Gaza 6, 84–93 (2003)Google Scholar
  15. Tsypkin, G.G.: Two-valued solutions in the problem of salt crystallization during groundwater evaporation. Fluid Dyn 40(4), 593–599 (2005). Translated Izv. Ross. Academii Nauk Mekh. Zhidkosti Gaza 4, 105–112 (2005)Google Scholar
  16. Tsypkin G.G., Caloreb C.: Role of capillary forces in vapour extraction from low-permeability, water-saturated geothermal reservoirs. Geothermics 32, 219–237 (2003). doi: 10.1016/S0375-6505(03)00018-X CrossRefGoogle Scholar
  17. Yiotis A.G., Boudouvis A.G., Stubos A.K., Tsimpanogiannis I.N., Yortsos Y.C.: Effect of liquid films on the isothermal drying of porous media. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(3), 037303.1–037303.4 (2003)Google Scholar
  18. Yiotis A.G., Boudouvis A.G., Stubos A.K., Tsimpanogiannis I.N., Yortsos Y.C.: The effect of liquid films on the drying of porous media. Am. Inst. Chem. Eng. J. 50(11), 2721–2737 (2004)Google Scholar
  19. Yortsos Y.C., Stubos A.K.: Phase change in porous media. Curr. Opin. Colloid Interface Sci. 6, 208–216 (2001). doi: 10.1016/S1359-0294(01)00085-1 CrossRefGoogle Scholar
  20. van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Petroleum EngineeringThe University of TulsaTulsaUSA

Personalised recommendations