Skip to main content
Log in

Water Evaporation Versus Condensation in a Hygroscopic Soil

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The liquid/vapour phase change of water in soil is involved in many environmental geotechnical processes. In the case of hygroscopic soils, the liquid water is strongly adsorbed on the solid phase and this particular thermodynamic state can highly influence the phase change kinetics. Based on the linear Thermodynamic of Irreversible Processes ideas, the non-equilibrium phase change rate is written as a linear function of the water chemical potential difference between the liquid and vapour state. In this relation, the system is characterized by a phenomenological coefficient that depends on the state variables. Using an original experimental set-up able to analyze the response of a porous medium subjected to non-equilibrium conditions, the phase change coefficient is determined in various configurations. This paper focuses on the influence of the gas phase pressure and underlines that a low gas pressure decreases the phase change kinetics. Then, evaporation and condensation processes are compared showing an asymmetric behaviour. These experimental results are interpreted from a microscopic point of view by relying on recent works dealing with molecular dynamics numerical simulation of the liquid/gas interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong J., Frind E., McClellan R.: Non-equilibrium mass transfer between the vapor, aqueous, and solid phases in unsaturated soils during vapor extraction. Water Resour. Res. 30, 355–368 (1994)

    Article  Google Scholar 

  • Bedeaux D., Kjelstrup S.: Transfer coefficients for evaporation. Physica A 270, 413–426 (1999)

    Article  Google Scholar 

  • Bénet J., Jouanna P.: Phenomenological relation of phase change of water in a porous medium: experimental verification and measurement of the phenomenological coefficient. Int. J. Heat Mass Transf. 25, 1747–1754 (1982)

    Article  Google Scholar 

  • Bond, M., Struchtrup, H.: Mean evaporation and condensation coefficients based on energy dependent condensation probability. Phys. Rev. E 70 (2004). doi:10.1103/PhysRevE.70.061605

  • Chammari A., Naon B., Cherblanc F., Bénet J.C.: Transfert d’eau en sol aride avec changement de phase—Water transport with phase change at low water content. Comptes Rendus de Mécanique 331, 759–765 (2003)

    Article  Google Scholar 

  • Chammari A., Naon B., Cherblanc F., Cousin B., Bénet J.C.: Interpreting the drying kinetics of a soil using a macroscopic thermodynamic non-equilibrium of water between the liquid and vapour phase. Dry. Technol. 26, 836–843 (2008)

    Article  Google Scholar 

  • Couture F., Fabrie P., Puiggali J.: An alternative choice for the drying variables leading to a mathematically and physically well described problem. Dry. Technol. 13, 519–550 (1995)

    Article  Google Scholar 

  • Delage P., Audiguier M., Cui Y., Howat M.: Microstructure of a compacted silty clay. Can. Geotech. J. 33, 150–158 (1996)

    Article  Google Scholar 

  • Eames I.: The evaporation coefficient of water: a review. Int. J. Heat Mass Transf. 42, 2963–2973 (1997)

    Article  Google Scholar 

  • Fang G.: Temperature measured close to the interface of an evaporating liquid. Phys. Rev. 59, 417–428 (1999)

    Google Scholar 

  • Gawin D., Lefik M., Schrefler B.: ANN approach to sorption hysteresis within a coupled hygro-thermo-mechanical FE analysis. Int. J. Numer. Methods Eng. 50, 299–323 (2001)

    Article  Google Scholar 

  • Kjelstrup S., Bedeaux D., Inzoli I., Simon J.M.: Criteria for validity of thermodynamic equations from non-equilibrium molecular dynamics simulations. Energy 33, 1185–1196 (2008)

    Article  Google Scholar 

  • Kuiken G.D.C.: Thermodynamics for Irreversible Processes. Wiley, Chichester (1994)

    Google Scholar 

  • Leroy P., Revil A., Altmann S., Tournassat C.: Modeling the composition of the pore water in a clay-rock geological formation (Callovo-Oxfordian, France). Geochim. Cosmochim. Acta 71, 1087–1097 (2007)

    Article  Google Scholar 

  • Lozano A., Cherblanc F., Cousin B., Bénet J.C.: Experimental study and modelling of the water phase change kinetics in soils. Eur. J. Soil Sci. 59, 939–949 (2008)

    Article  Google Scholar 

  • Marek R., Straub J.: Analysis of the evaporation coefficient and the condensation coefficient of water. Int. J. Heat Mass Transf. 44, 39–53 (2001)

    Article  Google Scholar 

  • Matsumoto M.: Molecular dynamics of fluid phase change. Fluid Phase Equilib. 144, 307–314 (1998)

    Article  Google Scholar 

  • Meland R., Frezzotti A., Ytrehus T., Hafskjold B.: Nonequilibrium molecular-dynamics simulation of net evaporation and net condensation, and evaluation of the gas-kinetic boundary condition at the interphase. Phys. Fluids 16, 223–243 (2003)

    Article  Google Scholar 

  • Mitchell J.: Fundamentals of Soil Behaviour. John Wiley and Sons, New York (1993)

    Google Scholar 

  • Moyne C., Perre P.: Processes related to drying. Part i. theoretical model. Dry. Technol. 9, 1135–1152 (1991)

    Article  Google Scholar 

  • Park, S., Sposito, G.: Structure of water adsorbed on a mica surface. Phys. Rev. Lett. 89 (2002) doi:10.1103/PhysRevLett.89.085501

  • Porion P., Michot L., Faugre A., Delville A.: Structural and dynamical properties of the water molecules confined in dense clay sediments: a study combining 2H NMR spectroscopy and multiscale numerical modeling. J. Phys. Chem. C 111, 5441–5453 (2007)

    Article  Google Scholar 

  • Prat M.: Recent advances in pore-scale models for drying of porous media. Chem. Eng. J. 86, 153–164 (2002)

    Article  Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W.: Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press (1992)

  • Ruiz T., Bénet J.: Phase change in a heterogeneous medium: comparison between the vaporisation of water and heptane in an unsaturated soil at two temperatures. Transp. Porous Media 44, 337–353 (2001)

    Article  Google Scholar 

  • Saix C., Devillers P., El Youssoufi M.: Eléments de couplage thermomécanique dans la consolidation de sols non saturés. Can. Geotech. J. 37, 308–317 (2000)

    Article  Google Scholar 

  • Skipper N.: Computer simulation of aqueous pore fluids in 2:1 clay minerals. Mineral. Mag. 62, 657–667 (1998)

    Article  Google Scholar 

  • Whitaker S.: Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Adv. Heat Transf. 13, 119–203 (1977)

    Google Scholar 

  • Yasuoka K., Matsumoto M., Kataoka Y.: Dynamics near a liquid surface: mechanisms of evaporation and condensation. J. Mol. Liq. 65(66), 329–332 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cherblanc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozano, A.L., Cherblanc, F. & Bénet, JC. Water Evaporation Versus Condensation in a Hygroscopic Soil. Transp Porous Med 80, 209–222 (2009). https://doi.org/10.1007/s11242-009-9351-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9351-z

Keywords

Navigation