Transport in Porous Media

, 80:209 | Cite as

Water Evaporation Versus Condensation in a Hygroscopic Soil

  • A. L. Lozano
  • F. CherblancEmail author
  • J.-C. Bénet


The liquid/vapour phase change of water in soil is involved in many environmental geotechnical processes. In the case of hygroscopic soils, the liquid water is strongly adsorbed on the solid phase and this particular thermodynamic state can highly influence the phase change kinetics. Based on the linear Thermodynamic of Irreversible Processes ideas, the non-equilibrium phase change rate is written as a linear function of the water chemical potential difference between the liquid and vapour state. In this relation, the system is characterized by a phenomenological coefficient that depends on the state variables. Using an original experimental set-up able to analyze the response of a porous medium subjected to non-equilibrium conditions, the phase change coefficient is determined in various configurations. This paper focuses on the influence of the gas phase pressure and underlines that a low gas pressure decreases the phase change kinetics. Then, evaporation and condensation processes are compared showing an asymmetric behaviour. These experimental results are interpreted from a microscopic point of view by relying on recent works dealing with molecular dynamics numerical simulation of the liquid/gas interface.


Phase change Vadose zone Evaporation Condensation Hygroscopic 


  1. Armstrong J., Frind E., McClellan R.: Non-equilibrium mass transfer between the vapor, aqueous, and solid phases in unsaturated soils during vapor extraction. Water Resour. Res. 30, 355–368 (1994)CrossRefGoogle Scholar
  2. Bedeaux D., Kjelstrup S.: Transfer coefficients for evaporation. Physica A 270, 413–426 (1999)CrossRefGoogle Scholar
  3. Bénet J., Jouanna P.: Phenomenological relation of phase change of water in a porous medium: experimental verification and measurement of the phenomenological coefficient. Int. J. Heat Mass Transf. 25, 1747–1754 (1982)CrossRefGoogle Scholar
  4. Bond, M., Struchtrup, H.: Mean evaporation and condensation coefficients based on energy dependent condensation probability. Phys. Rev. E 70 (2004). doi: 10.1103/PhysRevE.70.061605
  5. Chammari A., Naon B., Cherblanc F., Bénet J.C.: Transfert d’eau en sol aride avec changement de phase—Water transport with phase change at low water content. Comptes Rendus de Mécanique 331, 759–765 (2003)CrossRefGoogle Scholar
  6. Chammari A., Naon B., Cherblanc F., Cousin B., Bénet J.C.: Interpreting the drying kinetics of a soil using a macroscopic thermodynamic non-equilibrium of water between the liquid and vapour phase. Dry. Technol. 26, 836–843 (2008)CrossRefGoogle Scholar
  7. Couture F., Fabrie P., Puiggali J.: An alternative choice for the drying variables leading to a mathematically and physically well described problem. Dry. Technol. 13, 519–550 (1995)CrossRefGoogle Scholar
  8. Delage P., Audiguier M., Cui Y., Howat M.: Microstructure of a compacted silty clay. Can. Geotech. J. 33, 150–158 (1996)CrossRefGoogle Scholar
  9. Eames I.: The evaporation coefficient of water: a review. Int. J. Heat Mass Transf. 42, 2963–2973 (1997)CrossRefGoogle Scholar
  10. Fang G.: Temperature measured close to the interface of an evaporating liquid. Phys. Rev. 59, 417–428 (1999)Google Scholar
  11. Gawin D., Lefik M., Schrefler B.: ANN approach to sorption hysteresis within a coupled hygro-thermo-mechanical FE analysis. Int. J. Numer. Methods Eng. 50, 299–323 (2001)CrossRefGoogle Scholar
  12. Kjelstrup S., Bedeaux D., Inzoli I., Simon J.M.: Criteria for validity of thermodynamic equations from non-equilibrium molecular dynamics simulations. Energy 33, 1185–1196 (2008)CrossRefGoogle Scholar
  13. Kuiken G.D.C.: Thermodynamics for Irreversible Processes. Wiley, Chichester (1994)Google Scholar
  14. Leroy P., Revil A., Altmann S., Tournassat C.: Modeling the composition of the pore water in a clay-rock geological formation (Callovo-Oxfordian, France). Geochim. Cosmochim. Acta 71, 1087–1097 (2007)CrossRefGoogle Scholar
  15. Lozano A., Cherblanc F., Cousin B., Bénet J.C.: Experimental study and modelling of the water phase change kinetics in soils. Eur. J. Soil Sci. 59, 939–949 (2008)CrossRefGoogle Scholar
  16. Marek R., Straub J.: Analysis of the evaporation coefficient and the condensation coefficient of water. Int. J. Heat Mass Transf. 44, 39–53 (2001)CrossRefGoogle Scholar
  17. Matsumoto M.: Molecular dynamics of fluid phase change. Fluid Phase Equilib. 144, 307–314 (1998)CrossRefGoogle Scholar
  18. Meland R., Frezzotti A., Ytrehus T., Hafskjold B.: Nonequilibrium molecular-dynamics simulation of net evaporation and net condensation, and evaluation of the gas-kinetic boundary condition at the interphase. Phys. Fluids 16, 223–243 (2003)CrossRefGoogle Scholar
  19. Mitchell J.: Fundamentals of Soil Behaviour. John Wiley and Sons, New York (1993)Google Scholar
  20. Moyne C., Perre P.: Processes related to drying. Part i. theoretical model. Dry. Technol. 9, 1135–1152 (1991)CrossRefGoogle Scholar
  21. Park, S., Sposito, G.: Structure of water adsorbed on a mica surface. Phys. Rev. Lett. 89 (2002) doi: 10.1103/PhysRevLett.89.085501
  22. Porion P., Michot L., Faugre A., Delville A.: Structural and dynamical properties of the water molecules confined in dense clay sediments: a study combining 2H NMR spectroscopy and multiscale numerical modeling. J. Phys. Chem. C 111, 5441–5453 (2007)CrossRefGoogle Scholar
  23. Prat M.: Recent advances in pore-scale models for drying of porous media. Chem. Eng. J. 86, 153–164 (2002)CrossRefGoogle Scholar
  24. Press, W., Teukolsky, S., Vetterling, W.: Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press (1992)Google Scholar
  25. Ruiz T., Bénet J.: Phase change in a heterogeneous medium: comparison between the vaporisation of water and heptane in an unsaturated soil at two temperatures. Transp. Porous Media 44, 337–353 (2001)CrossRefGoogle Scholar
  26. Saix C., Devillers P., El Youssoufi M.: Eléments de couplage thermomécanique dans la consolidation de sols non saturés. Can. Geotech. J. 37, 308–317 (2000)CrossRefGoogle Scholar
  27. Skipper N.: Computer simulation of aqueous pore fluids in 2:1 clay minerals. Mineral. Mag. 62, 657–667 (1998)CrossRefGoogle Scholar
  28. Whitaker S.: Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Adv. Heat Transf. 13, 119–203 (1977)Google Scholar
  29. Yasuoka K., Matsumoto M., Kataoka Y.: Dynamics near a liquid surface: mechanisms of evaporation and condensation. J. Mol. Liq. 65(66), 329–332 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Laboratoire de Mécanique et Génie Civil, UMR CNRS 5508Université Montpellier 2MontpellierFrance

Personalised recommendations