Transport in Porous Media

, Volume 80, Issue 2, pp 193–208 | Cite as

Pressure Drop for Low Reynolds-Number Flows Through Regular and Random Screens

  • A. Valli
  • J. HyväluomaEmail author
  • A. Jäsberg
  • A. Koponen
  • J. Timonen


Creeping flow through both regular and irregular screens was simulated by the lattice-Boltzmann method, and the dependence on screen porosity and Reynolds number of the pressure drop across the screen was analyzed. Regular structures were planar arrays of straight fibers or woven one-layer structures. The irregular planar structures were composed of randomly located and oriented fibers of finite length. A simple function of screen porosity based on partly numerical scaling arguments was found to describe accurately the simulated pressure drop across all regular screens. Due to their bigger surface area, the flow resistance of woven screens was found to be about 15% larger than that of regular planar screens with the same porosity. The pressure drop across irregular planar screens was found to be described by the same screen-porosity function with a slightly different ‘scaling’ exponent which thus appears to be dependent on the structure of the screen. The flow resistance of irregular structures was found to be clearly smaller than that of regular structures because of channelling of the flow through very few largest pores.


Creeping flow Lattice–Boltzmann method Random screens Regular screens Flow resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annand W.J.D.: The resistance to air flow of wire gauzes. J. R. Aeron. Soc. 57, 141–146 (1953)Google Scholar
  2. Å ström J.A., Mäkinen J.P., Timonen J.: Modeling multilayer woven fabrics. Appl. Phys. Lett. 79, 180–181 (2001)CrossRefGoogle Scholar
  3. Beetstra R., van der Hoef M.A., Kuipers J.A.M.: Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J. 53, 489–501 (2007)CrossRefGoogle Scholar
  4. Benzi R., Succi S., Vergassola M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992)CrossRefGoogle Scholar
  5. Brundrett E.: Prediction of pressure-drop for incompressible-flow through screens. J. Fluids Eng. 115, 239–242 (1993)CrossRefGoogle Scholar
  6. Chen H., Chen S., Matthaeus W.: Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45, R5339–R5342 (1992)CrossRefGoogle Scholar
  7. Chen S., Doolen G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)CrossRefGoogle Scholar
  8. Comstock G.L., Côté W.A.: Factors affecting permeability and pit aspiration in coniferous sapwood. Wood Sci. Technol. 2, 279–291 (1968)CrossRefGoogle Scholar
  9. Cornell W.G.: Losses in flow normal of plane screens. Trans. Am. Soc. Mech. Eng. 80, 791–799 (1958)Google Scholar
  10. Crouse B., Rank E., Krafczyk M., Tölke J.: LB-based approach for adaptive flow simulations. Int. J. Mod. Phys. B 17, 109–112 (2003)CrossRefGoogle Scholar
  11. Ferréol B., Rothman D.H.: Lattice-Boltzmann simulations of flow through Fontainebleau sandstone. Transp. Porous Media 20, 3–30 (1995)CrossRefGoogle Scholar
  12. Filippova O., Hänel D.: Grid refinement for Lattice-BGK models. J. Comp. Phys. 147, 219–228 (1998)CrossRefGoogle Scholar
  13. Freund H., Bauer J., Zeiser T., Emig G.: Detailed simulation of transport processes in fixed-beds. Ind. Eng. Chem. Res. 44, 6423–6434 (2005)CrossRefGoogle Scholar
  14. Grootenhuis P.: A correlation of the resistance to air of wire gauzes. Proc. Inst. Mech. Eng. 168, 837–846 (1954)CrossRefGoogle Scholar
  15. Groth J., Johansson A.V.: Turbulence reduction by screens. J. Fluid Mech. 197, 139–155 (1988)CrossRefGoogle Scholar
  16. Grujicic M., Chittajallu K.M., Walsh S.: Lattice Boltzmann method based computation of the permeability of the orthogonal plain-weave fabric preforms. J. Mater. Sci. 41, 7989–8000 (2006)CrossRefGoogle Scholar
  17. Kandhai D., Koponen A., Hoekstra A., Kataja M., Timonen J., Sloot P.: Implementation aspects of 3D Lattice-BGK: boundaries, accuracy, and a new fast relaxation method. J. Comp. Phys. 150, 482–501 (1999a)CrossRefGoogle Scholar
  18. Kandhai D., Vidal D.J.E., Hoekstra A., Hoefsloot H., Iedema P., Sloot P.M.A.: Lattice-Boltzmann and finite element simulations of fluid flow in a SMRX static mixer reactor. Int. J. Numer. Methods Fluids 31, 1019–1033 (1999b)CrossRefGoogle Scholar
  19. Karlsson, M.: Papermaking, Part 2, Drying. Fupet Oy, Jyväskylä (2000)Google Scholar
  20. Kim S., Karrila S.J.: Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann, Boston (1991)Google Scholar
  21. Koponen A., Kandhai D., Hellén E., Alava M., Hoekstra A., Kataja M., Niskanen K., Sloot P., Timonen J.: Permeability of three-dimensional random fiber webs. Phys. Rev. Lett. 80, 716–719 (1998)CrossRefGoogle Scholar
  22. Laakkonen K.: Method to model dryer fabrics in paper machine scale using small-scale simulations and porous media model. Int. J. Heat Fluid Flow 24, 114–121 (2003)CrossRefGoogle Scholar
  23. Lamb H.: On the uniform motion of a sphere through a viscous fluid. Phil. Mag. 21, 112–121 (1911)Google Scholar
  24. Maier R.S., Kroll D.M., Davis H.T., Bernard R.S., Howington S.E., Peters J.F: Enhanced dispersion in cylindrical packed beds. Philos. Trans. R. Soc. Lond. A 360, 497–506 (2002)CrossRefGoogle Scholar
  25. Manwart C., Aaltosalmi U., Koponen A., Hilfer R., Timonen J.: Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media. Phys. Rev. E 66, 016702 (2002)CrossRefGoogle Scholar
  26. Martys N.S., Chen H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743–750 (1996)CrossRefGoogle Scholar
  27. Munson B.R.: Very low Reynolds-number flow through screens. J. Fluid Eng. 110, 462–463 (1988)CrossRefGoogle Scholar
  28. Paulapuro, H.: Papermaking, Part 1, Stock Preparation and Wet End. Fupet Oy, Jyväskylä (2000)Google Scholar
  29. Pinker R.A., Herbert M.V.: Pressure loss associated with compressible flow through square-mesh wire gauzes. J. Mech. Eng. Sci. 9, 11–23 (1967)CrossRefGoogle Scholar
  30. Pozrikidis C.: Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press, Oxford (1997)Google Scholar
  31. Qian Y.H., d’Humiéres D., Lallemand P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992)CrossRefGoogle Scholar
  32. Rothman D.H., Zaleski S.: Lattice Gas Cellular Automata. Cambridge University Press, Cambridge (1997)Google Scholar
  33. Schubauer, G.B., Spangenberg, W.G., Klebanoff, P.S.: Aerodynamic characteristics of damping screens. NACA Tech. Note 2001 (1950)Google Scholar
  34. Valli A., Koponen A., Vesala T., Timonen J.: Simulations of water flow through bordered pits of conifer xylem. J. Stat. Phys. 107, 121–142 (2002)CrossRefGoogle Scholar
  35. Yang J.M., Ho C.-M., Yang X., Tai Y.-C.: Micromachined particle filter with low power dissipation. J. Fluids Eng. 123, 899–908 (2001)CrossRefGoogle Scholar
  36. Yu D., Mei R., Shyy W.: A multi-block lattice Boltzmann method for viscous fluid flows. Int. J. Numer. Methods Fluids 39, 99–120 (2002)CrossRefGoogle Scholar
  37. Zeiser T., Lammers P., Klemm E., Li Y.W., Bernsdorf J., Brenner G.: CFD-calculation of flow, dispersion and reaction in a catalyst filled tube by the lattice Boltzmann method. Chem. Eng. Sci. 56, 1697–1704 (2000)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • A. Valli
    • 1
    • 2
  • J. Hyväluoma
    • 1
    Email author
  • A. Jäsberg
    • 1
  • A. Koponen
    • 1
  • J. Timonen
    • 1
  1. 1.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  2. 2.Helsinki PolytechnicHelsinkiFinland

Personalised recommendations