Advertisement

Transport in Porous Media

, Volume 79, Issue 3, pp 419–442 | Cite as

Pore-Scale Analysis of NAPL Blob Dissolution and Mobilization in Porous Media

  • M. Yavuz CorapciogluEmail author
  • Sunhee Yoon
  • Sabina Chowdhury
Article

Abstract

A pore-scale analysis of nonaqueous phase liquid (NAPL) blob dissolution and mobilization in porous media was presented. Dissolution kinetics of residual NAPLs in an otherwise water-saturated porous medium was investigated by conducting micromodel experiments. Changes in residual NAPL volume were measured from recorded video images to calculate the mass transfer coefficient, K and the lumped mass transfer rate coefficient, k. The morphological characteristics of the blobs such as specific and intrinsic area were found to be independent of water flow rate except at NAPL saturations below 2%. Dissolution process was also investigated by separating the mass transfer into zones of mobile and immobile water. The fractions of total residual NAPL perimeters in contact with mobile water and immobile water were measured and their relationship to the mass transfer coefficient was discussed. In general, residual NAPLs are removed by dissolution and mobilization. Although these two mechanisms were studied individually by others, their simultaneous occurrence was not considered. Therefore, in this study, mobilization of dissolving NAPL blobs was investigated by an analysis of the forces acting on a trapped NAPL blob. A dimensional analysis was performed to quantify the residual blob mobilization in terms of dimensionless Capillary number (Ca I). If Ca I is equal to or greater than the trapping number defined as \({{2\pi R_{\rm n} k_{\rm 0} k_{\rm rw}}/{\left[{(S_{\rm ni}-Da_{\rm I} P_{\rm v}^\# \Delta C^{\ast})V_{\rm p}}\right]}}\), then blob mobilization is expected.

Keywords

NAPL dissolution Mobilization Micromodel Pore-scale Blob 

List of Notation

ai

Intrinsic interfacial area (L2 L−3)

a0

Specific NAPL interfacial area (L2 L−3)

Af

Adjacent upstream area immediately preceding A t (L2)

A0

Total area occupied by the NAPL blobs within A f (L2)

At

Target area of porous medium selected for analysis (L2)

A

Area occupied by NAPL blobs within A t (L2)

Bo

Bond number (\({{Bo={\Delta \rho gk_{\rm 0} k_{\rm rw}}/\sigma}}\))

CaI

Capillary number for water phase (\({{Ca_{\rm I}={\mu_{\rm w} u}/\sigma}}\))

CaII

Capillary number for NAPL phase (\({{Ca_{\rm II}={\mu_{\rm 0} u_{\rm 0}}/\sigma}}\))

\({Ca_{\rm I}^{\prime}}\)

Capillary number for momentum transfer from water to NAPL phase \({\left({Ca_{\rm I}^{\prime}={\mu_{\rm w}({u-({{S_{\rm w}}/{1-S_{\rm w}}})u_{\rm 0}})}/\sigma} \right)}\)

\({Ca_{\rm II}^{\prime}}\)

Capillary number for momentum transfer from NAPL to water phase\({\left({Ca_{\rm II}^{\prime}={\mu_{\rm 0} ({u_{\rm 0}-({{1-S_{\rm w}}/{S_{\rm w}}})u})}/\sigma} \right)}\)

C

Contaminant concentration in the water phase (ML−3)

Ceq

Equilibrium concentration or solubility limit of NAPL in the water phase (ML−3)

dm

Volumetric intrinsic phase average of a characteristic length (L)

Ddiff

Molecular diffusion coefficient of NAPL in the water phase (L2 T−1)

DaI

First Damkohler number (Da I = KL c/u)

h

Average thickness of the micromodel (L)

k0

Absolute permeability (L2)

krw

Relative permeability for water phase (−)

kro

Relative permeability for NAPL (−)

kwo

Cross permeability (L2)

k

Mass transfer coefficient (L3 L−2 T−1)

K

Lumped mass transfer rate coefficient (L3 L−3 T−1)

[L]

Length dimension

L*

Dimension of A f perpendicular to the flow direction (L)

Lc

Characteristic length (L)

Lm

Total width of the micromodel perpendicular to the flow direction (L)

[M]

Mass dimension

n

Porosity (L3L−3)

\({N_{\rm t}^{\ast}}\)

Trapping number (\({{N_{\rm t}^{\ast}={2\pi R_{\rm n} k_{\rm 0} k_{\rm rw}}/{[{(S_{\rm ni} -Da_{\rm I} pv \Delta C^{\ast})V_{\rm p}}]}}}\))

\({P_{\rm v}^\#}\)

Number of pore volume (\({{P_{\rm v}^\# ={ut}/{L_{\rm c} n}}}\))

P

Total interfacial NAPL perimeter within the target volumehA t (L)

Pe

Peclet number (Pe = ud m/D diff)

Q

Total flow rate (L3 T−1)

Re

Reynolds number (Re = ud m/ν)

R0

Radius of NAPL blob (L)

Rn

Radius of a pore throat (L)

Sn

Volumetric NAPL saturation (L3 L−3)

Sni

Initial volumetric NAPL saturation (L3 L−3)

Sw

Volumetric water saturation (L3 L−3)

Sh

Sherwood number (Sh = kd m/D diff)

Sh

Modified Sherwood number (\({{Sh^{\prime}={Kd_{\rm m}^2}/{D_{\rm diff}}}}\))

St

Stanton number (St = k/u)

t

Temporal time (T)

[T]

Time dimension

u

Specific discharge for water phase (L3 L−2 T−1)

u0

Specific discharge for NAPL blob (L3 L−2 T−1)

V

Temporal volume of residual NAPL (L3)

Vi

Initial volume of residual NAPL (L3)

Vp

Pore volume (L3)

Vt

Total volume of the porous matrix (L3)

x

Direction of the one-dimensional flow field

ρ

Density of NAPL (M L−3)

ρw

Density of water phase (M L−3)

Δρ

Difference between NAPL and water densities (Δρρ wρ)

ν

Kinematic viscosity of water phase (L2 T−1)

\({\sigma}\)

Interfacial tension between NAPL and water phase (M T−2)

μw

Dynamic viscosity of water phase (M/LT)

μ0

Dynamic viscosity of NAPL (M/LT)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bora R., Maini B.B., Chakma A.: Flow visualization studies of solution gas drive process in heavy oil reservoirs with glass micromodel. SPE Reserv. Eval. Eng. 3, 224–229 (2000). doi: 10.2118/64226-PA Google Scholar
  2. Bradford S.A., Leji F.J.: Estimating interfacial areas for multi-fluid soil systems. J. Contam. Hydrol. 27, 83–105 (1997). doi: 10.1016/S0169-7722(96)00048-4 CrossRefGoogle Scholar
  3. Browning F.H., Fogler H.S.: Fundamental study of the dissolution of calcium-phosphonates in porous media. AIChEJ. 42(10), 2883–2896 (1996). doi: 10.1002/aic.690421017 CrossRefGoogle Scholar
  4. Brusseau M.L.: Rate-limited mass transfer and transport of organic solutes in porous media that contain immobile immiscible organic liquid. Water Resour. Res. 28, 33–45 (1992). doi: 10.1029/91WR02498 CrossRefGoogle Scholar
  5. Brutsaert W.: Hydrogeology: An Introduction. Cambridge University, Cambridge (2005)Google Scholar
  6. Buckley J.: Multiphase displacement in micromodels. In: Norman, M. (eds) Interfacial Phenomena in Petroleum Technology, pp. 157–189. Marcel Decker Inc., New York (1991)Google Scholar
  7. Cary J.W.: Estimating the surface area of fluid phase interfaces in porous media. J. Contam. Hydrol. 15, 243–248 (1994). doi: 10.1016/0169-7722(94)90029-9 CrossRefGoogle Scholar
  8. Chatzis I., Morrow N., Lim H.T.: Magnitude and detailed structure of residual oil saturation. Soc. Pet. Eng. J. 23, 311–326 (1983). doi: 10.2118/10681-PA Google Scholar
  9. Conrad S.H., Wilson J.L., Mason W.R., Peplinski W.J.: Visualization of residual organic liquids trapped in aquifers. Water Resour. Res. 28, 467–478 (1992). doi: 10.1029/91WR02054 CrossRefGoogle Scholar
  10. Corapcioglu M.Y., Fedirchuk P.: Glass bead micromodel study of solute transport. J. Contam. Hydrol. 36, 209–230 (1999). doi: 10.1016/S0169-7722(98)00145-4 CrossRefGoogle Scholar
  11. Corapcioglu M.Y., Chowdhury S., Roosevelt S.E.: Residual nonaqueous phase liquid dissolution in micromodels. In: Rubin, H., Narkis, N., Carberry, J. (eds) Soil and Aquifer Pollution, Chap. 19, pp. 289–299. Springer-Verlag, Heidelberg, Germany (1998)Google Scholar
  12. Corapcioglu M.Y., Cihan A., Drazenovic M.: Rise velocity of an air bubble in porous media: Theoretical studies. Water Resour. Res. 40, 1–9 (2004). doi: 10.1029/2003WR002618 CrossRefGoogle Scholar
  13. Corey, A.T.: Mechanics of immiscible fluid in porous media, revised by Water Resources Publications, p. 105. Highlands Ranch, Colorado, USA (1994)Google Scholar
  14. Dawe R.A., Mahers E.G., Williams J.K.: Pore scale physical modeling of transport phenomena in porous media. In: Bear, J., Corapcioglu, M.Y. (eds) Advances in Transport Phenomena in Porous Media, pp. 49–76. Martinus Nijhoff, Dordrecht, The Netherlands (1987)Google Scholar
  15. Duffield A.R., Ramamurty R.S., Campanelli J.R.: Surfactant enhanced mobilization of mineral oil within porous media. Water Air Soil Pollut. 143, 111–122 (2003). doi: 10.1023/A:1022829204883 CrossRefGoogle Scholar
  16. Fontenot M.M., Vigil R.D.: Pore-scale study of nonaqueous phase liquid dissolution in pores media using laser-induced fluorescence. J. Colloid Interface Sci. 247, 481–489 (2002). doi: 10.1006/jcis.2001.8158 CrossRefGoogle Scholar
  17. Geller J.T., Hunt J.R.: Mass transfer from nonaqueous phase organic liquids in water-saturated porous media. Water Resour. Res. 29(4), 833–845 (1993). doi: 10.1029/92WR02581 CrossRefGoogle Scholar
  18. Gioia F., Alfani G., Andreutti S., Murena F.: Oil mobility in a saturated water-wetted bed of glass beads. J. Hazard. Mater. B 97, 315–327 (2003). doi: 10.1016/S0304-3894(02)00281-9 CrossRefGoogle Scholar
  19. Hatfield K., Stauffer T.B.: Transport in porous media containing residual hydrocarbon. I: Model. J. Environ. Eng. 119, 540–558 (1993). doi: 10.1061/(ASCE)0733-9372(1993)119:3(540) CrossRefGoogle Scholar
  20. Hunt J.R., Sitar N., Udel K.S.: Nonaqueous phase liquid transport and cleanup 1. Analysis of mechanisms. Water Resour. Res. 24, 1247–1258 (1988). doi: 10.1029/WR024i008p01247 CrossRefGoogle Scholar
  21. Image-Pro PlusTM: Image Processing System Version 2.0, Media Cybernetics. Silver Spring, MD (1992)Google Scholar
  22. Imhoff P.T., Jaffe P.R., Pinder G.F.: An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media. Water Resour. Res. 30(2), 307–320 (1994a). doi: 10.1029/93WR02675 CrossRefGoogle Scholar
  23. Imhoff P.T., Jaffe P.R., Pinder G.F.: Correction to “An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media”. Water Resour. Res. 30(10), 2871 (1994b). doi: 10.1029/94WR01799 CrossRefGoogle Scholar
  24. Jeong S.W., Corapcioglu M.Y.: A micromodel analysis of factors influencing NAPL removal by surfactant foam flooding. J. Contam. Hydrol. 60, 77–99 (2003a). doi: 10.1016/S0169-7722(02)00054-2 CrossRefGoogle Scholar
  25. Jeong S.W., Corapcioglu M.Y.: Physical model analysis of foam-TCE displacement in porous media. AIChE J. 49, 782–788 (2003b). doi: 10.1002/aic.690490321 CrossRefGoogle Scholar
  26. Jia C., Shing K., Yortsos Y.C.: Visualization and simulation of NAPL solubilization in pore networks. J. Contam. Hydrol. 35(4), 363–387 (1999). doi: 10.1016/S0169-7722(98)00102-8 CrossRefGoogle Scholar
  27. Johns M.L., Gladden L.F.: Magnetic resonance imaging of the dissolution kinetics of octonal in porous media. J. Colloid Interface Sci. 210, 261–270 (1999). doi: 10.1006/jcis.1998.5950 CrossRefGoogle Scholar
  28. Johns M.L, : Probing ganglia dissolution and mobilization in a water-saturated porous medium using MRI. J. Colloid Interface Sci. 225, 119–127 (2000). doi: 10.1006/jcis.2000.6742 CrossRefGoogle Scholar
  29. Keller A.A., Blunt M.J., Roberts P.V.: Micromodel observation of the role of oil layers in three-phase flow. Transp. Porous Media 26, 277–297 (1997). doi: 10.1023/A:1006589611884 CrossRefGoogle Scholar
  30. Kennedy C.A., Lennox W.C.: A pore-scale investigation of mass transport from dissolving DNAPL droplets. J. Contam. Hydrol. 24, 221–246 (1997). doi: 10.1016/S0169-7722(96)00011-3 CrossRefGoogle Scholar
  31. Mayer A.S., Miller C.T.: An experimental investigation of pore-scale distributions of nonaqueous phase liquids at residual saturation. Transp. Porous Media 10, 57–80 (1993). doi: 10.1007/BF00617511 CrossRefGoogle Scholar
  32. McKellar M., Wardlaw N.C.: A method of making two-dimensional glass micromodels of pore systems. J. Can. Petrol. Technol. 21, 39–41 (1982)Google Scholar
  33. Miller C.T., Poirier-McNeill M.M., Mayer A.S.: Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics. Water Resour. Res. 26(11), 2783–2796 (1990)CrossRefGoogle Scholar
  34. Nambi I.M., Powers S.E.: Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial saturations. Water Resour. Res. 39(2), 1030 (2003). doi: 10.1029/2001WR000667 CrossRefGoogle Scholar
  35. Ng K.M., Davis H.T., Scriven L.E.: Visualization of blob mechanics in flow through porous media. Chem. Eng. Sci. 33, 1009–1017 (1978). doi: 10.1016/0009-2509(78)85004-0 CrossRefGoogle Scholar
  36. Pennell K.D., Pore G.A., Abriola L.M.: Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environ. Sci. Technol. 30(4), 1328–1335 (1996). doi: 10.1021/es9505311 CrossRefGoogle Scholar
  37. Powers S.E., Loureiro C.O., Abriola L.M., Weber W.J. Jr.: Theoretical study of the significance of nonequilibrium dissolution of nonaqueous phase liquids in subsurface systems. Water Resour. Res. 27(4), 463–477 (1991). doi: 10.1029/91WR00074 CrossRefGoogle Scholar
  38. Powers S.E., Abriola L.M., Weber W.J. Jr.: An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Steady state mass transfer rates. Water Resour. Res. 28(10), 2691–2705 (1992). doi: 10.1029/92WR00984 CrossRefGoogle Scholar
  39. Powers S.E., Abriola L.M., Weber W.J. Jr.: An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Transient mass transfer rates. Water Resour. Res. 30(2), 321–332 (1994). doi: 10.1029/93WR02923 CrossRefGoogle Scholar
  40. Saripalli K.P., Kim H., Rao P.S.C., Annable M.D.: Measurement of specific fluid-fluid interfacial areas of immiscible fluids in porous media. Environ. Sci. Technol. 31(3), 932–936 (1997). doi: 10.1021/es960652g CrossRefGoogle Scholar
  41. Soll W.E., Celia M.A., Wilson J.L.: Micromodel studies of three-fluid porous media systems: Pore-scale processes relating to capillary pressure-saturation relationship. Water Resour. Res. 29, 2963–2974 (1993). doi: 10.1029/93WR00524 CrossRefGoogle Scholar
  42. Tung V.X., Dhir V.K.: A hydrodynamic model for two-phase flow through porous media. Int. J. Multiph. Flow 14, 47–65 (1988). doi: 10.1016/0301-9322(88)90033-X CrossRefGoogle Scholar
  43. Wan J., Wilson J.L.: Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media. Water Resour. Res. 30, 11–23 (1994). doi: 10.1029/93WR02403 CrossRefGoogle Scholar
  44. Wardlaw N.C.: The effect of geometry, wettability, viscosity, and interfacial tension on trapping in single pore throat pairs. J. Can. Pet Technol. 21, 21–27 (1982)Google Scholar
  45. Wardlaw N.C., McKellar M.: Oil blob populations and mobilization of trapped oil in unconsolidated packs. Can. J. Chem. Eng. 63, 525–532 (1985)CrossRefGoogle Scholar
  46. Zhang C., Werth C.J., Webb A.G.: A magnetic resonance imaging of dense nonaqueous phase liquid dissolution from angular porous media. Environ. Sci. Technol. 36(15), 3310–3317 (2002). doi: 10.1021/es011497v CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. Yavuz Corapcioglu
    • 1
    Email author
  • Sunhee Yoon
    • 2
  • Sabina Chowdhury
    • 2
  1. 1.Department of Civil and Environmental EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.Department of Civil EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations