Skip to main content

Miscible Displacements of Reactive and Anisotropic Dispersive Flows in Porous Media

Abstract

The viscous fingering instability of miscible reactive–dispersive flows in a homogeneous porous media is investigated through nonlinear numerical simulations. In particular, the role of velocity-dependent transverse and longitudinal dispersions as well as the type and rate of auto-catalytic chemical reactions is analyzed. It is found that for a third-order auto-catalytic reaction, the higher the reaction rate, the more complex the finger structures. Furthermore, major differences between the flow development of third-order and second-order autocatalytic reactions are reported. In addition, the anisotropy and velocity dependence of the dispersion tensor are found to have a more profound effect on the fingering instability in the case of reactive flows than in the non-reactive ones. The qualitative characterization of the finger structures is explained by examining the flow velocity field and further quantified through an analysis of the average concentration and relative contact area.

This is a preview of subscription content, access via your institution.

References

  • Alvarado V., Scriven L.E., Davis H.T.: Stochastic-perturbation analysis of a one-dimensional dispersion-reaction equation: effects of spatially-varying reaction rates. Transp. Porous Media 32, 139–161 (1998) doi:10.1023/A:1006575527731

    Article  Google Scholar 

  • Azaiez J., Singh B.: Stability of miscible displacements of shear-thinning fluids in a Hele-Shaw cell. Phys. Fluids 14, 1557–1571 (2002) doi:10.1063/1.1462030

    Article  Google Scholar 

  • Bansagi T. Jr., Horvath D., Toth A., Yang J., Kalliadasis S., De Wit A.: Density fingering of an exothermic autocatalytic reaction. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, 55301–55314 (2003) doi:10.1103/PhysRevE.68.055301

    Google Scholar 

  • Bansagi T., Horvath D., Toth A.: Multi-component convection in the chlorite–tetrathionate reaction. Chem. Phys. Lett. 384, 153–156 (2004) doi:10.1016/j.cplett.2003.12.018

    Article  Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)

    Google Scholar 

  • Bear J., Bachmat Y.: Introduction to Modelling of Transport Phenomena in Porous Media. Kluwer, Dordrecht (1990)

    Google Scholar 

  • Ben-Jacob E., Garik P.: The formation of patterns in non-equilibrium growth. Nature 343, 523–530 (1990) doi:10.1038/343523a0

    Article  Google Scholar 

  • Bockmann M., Muller S.C.: Growth rates of the buoyancy-driven instability of an autocatalytic reaction front in a narrow cell. Phys. Rev. Lett. 85, 2506–2509 (2000) doi:10.1103/PhysRevLett.85.2506

    Article  Google Scholar 

  • Brenner E., Levine H., Tu Y.: Non-symmetric Saffman-Taylor fingers. Phys. Fluids A. 3, 529–534 (1991) doi:10.1063/1.858114

    Article  Google Scholar 

  • Carey M.R., Morris S.W., Kolodner P.: Convective fingering of an autocatalytic reaction front. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53, 6012–6015 (1996) doi:10.1103/PhysRevE.53.6012

    Google Scholar 

  • Chuoke R.L., van Meurs P., Vander Poel C.: The instability of slow, immiscible, viscous liquid–liquid displacements in permeable media. Trans. AIME 216, 188–194 (1959)

    Google Scholar 

  • Coroian D.I., Vasquez D.A.: The effect of the order of autocatalysis for reaction fronts in vertical slabs. J. Chem. Phys. 119, 3354–3359 (2003)

    Article  Google Scholar 

  • D’Hernoncourt J., Kalliadasis S., De Wit A.: Fingering of exothermic reaction-diffusion fronts in Hele-Shaw cells with conducting walls. J. Chem. Phys. 123, 234503-1-9 (2005)

    Article  Google Scholar 

  • D’Hernoncourt J., De Wit A., Merkin J.H.: Effects of a constant electric field on the diffusional instability of cubic autocatalytic reaction fronts. J. Chem. Phys. 126, 104504 (2007)

    Article  Google Scholar 

  • De D., Hrymak A.N., Pelton H.: A network of zones model for reactive polymer enhanced miscible displacement in a porous cylinder. Chem. Eng. Sci. 53, 3445–3559 (1998) doi:10.1016/S0009-2509(98)00162-6

    Google Scholar 

  • De Wit A., Homsy G.M.: Nonlinear interactions of chemical reactions and viscous fingering in porous media. Phys. Fluids 11, 949–51 (1999)

    Article  Google Scholar 

  • De Wit A., Homsy G.M.: Viscous fingering in reaction-diffusion systems. J. Chem. Phys. 110, 8663–8675 (1999) doi:10.1063/1.478774

    Article  Google Scholar 

  • De Wit A.: Fingering of chemical fronts in porous media. Phys. Rev. Lett. 87, 054502/1–4 (2001)

    Google Scholar 

  • Demuth R., Meiburg E.: Chemical fronts in Hele-Shaw cells: linear stability analysis based on the three-dimensional stokes equations. Phys. Fluids 15, 597–602 (2003) doi:10.1063/1.1536972

    Article  Google Scholar 

  • Ghesmat K., Azaiez J.: Viscous fingering instability in porous media: effect of anisotropic velocity-dependent dispersion tensor. Transp. Porous Media 73, 297–318 (2008) doi:10.1007/s11242-007-9171-y

    Article  Google Scholar 

  • Hill S.: Channeling in packed columns. Chem. Eng. Sci. 1, 247–253 (1952) doi:10.1016/0009-2509(52)87017-4

    Article  Google Scholar 

  • Homsy G.M.: Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271–311 (1987) doi:10.1146/annurev.fl.19.010187.001415

    Article  Google Scholar 

  • Horvath D., Bansagi T., Toth A.: Orientation-dependent density fingering in an acidity front. J. Chem. Phys. 117, 4399–4402 (2002) doi:10.1063/1.1497163

    Article  Google Scholar 

  • Huang J., Edwards B.F.: Pattern formation and evolution near autocatalytic reaction fronts in a narrow vertical slab. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54, 2620–2627 (1996) doi:10.1103/PhysRevE.54.2620

    Google Scholar 

  • Islam M.N., Azaiez J.: Fully implicit finite difference pseudo-spectral method for simulating high mobility-ratio miscible displacements. Int. J. Numer. Methods Fluids 47, 161–183 (2005) doi:10.1002/fld.803

    Article  Google Scholar 

  • Kechagia P.E., Tsimpanogiannis I.N., Yortsos Y.C., Lichtner P.C.: On the upscaling of reaction-transport processes in porous media with fast or finite kinetics. Chem. Eng. Sci. 57, 2565–2577 (2002) doi:10.1016/S0009-2509(02)00124-0

    Article  Google Scholar 

  • Manickam O., Homsy G.M.: Simulation of viscous fingering in miscible displacements with non-monotonic viscosity profiles. Phys. Fluids 6, 95–107 (1994) doi:10.1063/1.868049

    Article  Google Scholar 

  • Manickam O., Homsy G.M.: Fingering instabilities in vertical miscible displacement flows in porous media. J. Fluid Mech. 288, 75–102 (1995) doi:10.1017/S0022112095001078

    Article  Google Scholar 

  • McCloud K.V., Maher J.V.: Experimental perturbations to Saffman-Taylor flow. Phys. Rep. 260, 139–185 (1995) doi:10.1016/0370-1573(95)91133-U

    Article  Google Scholar 

  • Nagatsu Y., Ueda T.: Effects of reactant concentrations on reactive miscible viscous fingering. Fluid. Mech. Trans. Phen. 47, 1711–1720 (2001)

    Google Scholar 

  • Nittmann J., Stanley H.E.: Tip splitting without interfacial tension and dendritic growth patterns arising from molecular anisotropy. Nature 321, 663–668 (1986) doi:10.1038/321663a0

    Article  Google Scholar 

  • Ortoleva P.J.: Geochemical Self-organization. Oxford University Press, Oxford (1994)

    Google Scholar 

  • Park C.W., Homsy G.M.: The instability of long fingers in Hele-Shaw flows. Phys. Fluids 28, 1583–1585 (1985) doi:10.1063/1.864947

    Article  Google Scholar 

  • Peaceman D.W., Rachford H. Jr.: Numerical calculation multidimensional miscible displacement. Soc. Pet. Eng. J. 2, 327–339 (1962) doi:10.2118/471-PA

    Google Scholar 

  • Rica T., Horvath D., Toth A.: Density fingering in acidity fronts: effect of viscosity. Chem. Phys. Lett. 408, 422–425 (2005) doi:10.1016/j.cplett.2005.04.083

    Article  Google Scholar 

  • Ruith M., Meiburg E.: Miscible rectilinear displacements with gravity override, Part 1, Homogeneous porous medium. J. Fluid Mech. 420, 225–257 (2000) doi:10.1017/S0022112000001543

    Article  Google Scholar 

  • Saffman P.G., Taylor G.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A Math. Phys. Sci. 245, 312–329 (1958) doi:10.1098/rspa.1958.0085

    Article  Google Scholar 

  • Singh B., Azaiez J.: Numerical simulation of viscous fingering of Shear-Thinning Fluids. Can. J. Chem. Eng. 79, 961–967 (2001)

    Google Scholar 

  • Slobod R.L., Caudle B.H.: X-Ray shadowgraph studies of areal sweep-out efficiencies. Trans. AIME 195, 265–269 (1952)

    Google Scholar 

  • Tan C.T., Homsy G.M.: Viscous fingering with permeability heterogeneity. Phys. Fluids A 4, 1099–1101 (1992) doi:10.1063/1.858227

    Article  Google Scholar 

  • Vasquez D.A., Wilder J.W., Edwards B.F.: Chemical wave propagation in Hele-Shaw cells and porous media. J. Chem. Phys. 104, 9926–9931 (1996) doi:10.1063/1.471720

    Article  Google Scholar 

  • Vasquez D.A., Wit D.: A. Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells. J. Chem. Phys. 121, 935–941 (2004) doi:10.1063/1.1760515

    Article  Google Scholar 

  • Yang J., D’Onofrio A., Kalliadasis S., De Wit A.: Rayleigh-Taylor instability of reaction-diffusion acidity fronts. J. Chem. Phys. 117, 9395–9408 (2002) doi:10.1063/1.1516595

    Article  Google Scholar 

  • Yortsos Y.C., Zeybek M.: Dispersion driven instability in miscible displacement in porous media. Phys. Fluids 31, 3511–3518 (1988) doi:10.1063/1.866918

    Article  Google Scholar 

  • Zadrazil A., Sevcikova H.: Influence of an electric field on the buoyancy-driven instabilities. J. Chem. Phys. 123, 174509-1-8 (2005)

    Article  Google Scholar 

  • Zadrazil A., Kiss I.Z., D’Hernoncourt J., Sevcikova H., Merkin J.H., De Wit A.: Effects of constant electric fields on the buoyant stability of reaction fronts Phys. Rev. E 71, 26224-1-11 (2005)

    Google Scholar 

  • Zhao H., Casademunt J., Yeung C., Maher J.V.: Perturbing Hele-Shaw flow with a small gap gradient. Phys. Rev. A 45, 2455–2460 (1992) doi:10.1103/PhysRevA.45.2455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Azaiez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghesmat, K., Azaiez, J. Miscible Displacements of Reactive and Anisotropic Dispersive Flows in Porous Media. Transp Porous Med 77, 489 (2009). https://doi.org/10.1007/s11242-008-9273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11242-008-9273-1

Keywords

  • Viscous fingering
  • Anisotropic velocity-dependent dispersion tensor
  • Reactive flows
  • Autocatalytic reactions
  • Homogeneous porous media
  • Nonlinear simulations