Skip to main content
Log in

Analytical Treatment of a Push–Pull “Echo” Test

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A semi-analytical streamline-based model, employing stratification and macro physics only, is developed and utilized to simulate injection/production phases of single-well push–pull tests. Modeling results are compared with experimental field data, giving an excellent match, without resorting to parameter fitting, simply by putting in known test-site properties, such as stratification data, hydraulic head gradients, and test parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b j :

Height of layer j (m)

\({\mathcal C_j}\) :

\({\dfrac{\phi_A}{\phi_j} \dfrac{k_j}{k_A}}\)

C :

Injectant concentration in the producing well-stream

k :

Permeability (darcy)

P :

Pressure (Pa)

q 3D :

Volumetric rate (m3/day)

Q :

\({\dfrac{q_{\rm 3D}}{2\pi b\phi}}\) (m2/day)

r :

Polar coordinate, radial distance from Origo (m)

r w :

Well radius (m)

r max :

r(t = T i ), maximum radial tracer advancement (m)

t :

Absolute time, since the injection phase started (days)

T i :

Total duration of the injection phase (days)

T BT :

Time, since the production phase started, of breakthrough, may refer to overall production, production from a specific layer, or production from a specific streamline (days)

U u :

Natural, uniform groundwater velocity in the positive x-direction (m/day)

U θ :

\({r \cdot \dfrac{{\rm d} \theta}{{\rm d}t}}\) , tangential velocity (m · rad/day)

U r :

\({\dfrac{{\rm d}r}{{\rm d}t}}\) , radial velocity (m/day)

θ :

Polar coordinate, angle to the positive x-axis (rad)

\({\phi}\) :

Fractional porosity

ψ :

The Stream-function

i :

Denoting injection phase variables and parameters

j :

Index to denote layer number

n :

Accounting index to denote individual streamlines, \({n \in [1, N]}\) . n = 1 denotes the streamline with constant θ = 0, and n = N denotes the streamline with constant θ = π

p :

Denoting production phase variables and parameters

References

  • Aronofsky, J.S., Heller, J.P.: A diffusion model to explain mixing of flowing miscible fluids in porous media. Trans. AIME 210, 345–349 (1957)

    Google Scholar 

  • Arya, A., Hewett, T.A., Larson, R.G., Lake, L.W.: Dispersion and reservoir heterogeneity. SPERE 3, 139–148, SPE 14364 (1988)

    Google Scholar 

  • Batycky, R.P.: A three-dimensional two-phase field scale streamline simulator. PhD thesis, Stanford University (1997)

  • Bear, J.: Dynamics of Fluids in Porous Media, Chap. 9.5.4, pp. 532–533. Dover Publications Inc., New York (1988a)

  • Bear J.: Dynamics of Fluids in Porous Media, Chap 6.5. Dover Publications Inc., New York (1988b)

    Google Scholar 

  • Cherry, J.A., Jackson, R.E., McNaughton, D.C., Pickens, J.F., Woldetensae, H.: Physical hydrogeology of the lower Perch Lake basin. In: Barry, P.J. (ed.) Hydrological Studies on a Small Basin on the Canadian Shield, Atomic Energy of Canada, Ltd., Chalk River Nuclear Laboratories, Ontario, Canada, pp. 625–680. AECL 5041/II (1975)

  • Coats, K.H., Whitson, C.H., Thomas, L.K.: Modelling conformance as dispersion. SPE Annual Technical Conference and Exhibition, 26–29 September, Houston, Texas, SPE 90390 (2004)

  • Coats Engineering Web Page: http://www.coatsengineering.com (2006)

  • Gagne, R.M.: Seismic investigation of the Perch Lake study area, Chalk River Nuclear Laboratories. In: Barry, P.J. (ed.) Hydrological Studies on a Small Basin on the Canadian Shield, Atomic Energy of Canada, Ltd., Chalk River Nuclear Laboratories, Ontario, Canada, pp. 139–143. AECL 5041/I (1975)

  • Gelhar L.W., Collins M.A.: General analysis of longitudinal dispersion in nonuniform flow. Water Resour. Res. 7(6), 1511–1521 (1971)

    Article  Google Scholar 

  • Ginn T.R.: Stochastic-convective transport with nonlinear reactions and mixing: finite streamtube ensemble formulation for multicomponent reaction systems with intra streamtube dispersion. J. Contam. Hydrol. 47(1), 1–28 (2001)

    Article  Google Scholar 

  • Istok J., Humphrey M., Schroth M., O’reilly K.: Single well “push-pull” test for in situ determination of microbial activities. Groundwater 35(4), 619–631 (1997)

    Google Scholar 

  • Jang M.: 3d aquifer characterization using stochastic streamline calibration. Adv. Water Resour. 30(3), 420–429 (2007)

    Article  Google Scholar 

  • Johnsen, S.G.: An analytical mathematical theoretical study of single-well push-pull echo tests. PhD thesis, The Norwgian University of Science and Technology. http://urn.ub.uu.se/resolve?urn=urn:nbn:no:ntnu:diva-1768 (2007)

  • Kim, Y., Azizian, M., Istok, J., Semprini, L.: Field Push-Pull Test Protocoll for Environmental Security Technology Certification Program. Oregon State University, Civil, Construction, and Environmental Engineering Department, Corvallis, OR 97331 (2005)

  • Kruseman, G.P., de Ridder, N.A.: Analysis and Evaluation of Pumping Test Data, Bulletin 11. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands (1970)

  • Leap D., Kaplan P.: A single-well tracing method for estimating regional advective velocity in a confined aquifer: Theory and preliminary laboratory verification. Water Resour. Res. 24(7), 993–998 (1988)

    Article  Google Scholar 

  • Mahadevan, J., Lake, L.W., Johns, R.T.: Estimation of true dispersivity in field scale permeable media. In: SPE/DOE Improved Oil Recovery Symposium, 13–17 April, Tulsa, Oklahoma, SPE 75247 (2002)

  • Perkins T.K., Johnston O.C.: A review of diffusion and dispersion in porous media. SPEJ 3(1), 70–84 (1963)

    Article  Google Scholar 

  • Pickens J.F., Grisak G.E.: Scale-dependent dispersion in a stratified granular aquifer. Water Resour. Res. 17(4), 1191–1211 (1981)

    Article  Google Scholar 

  • Rottmann, K.: Matematisk Formelsamling, Norsk Utgave, 4th edn. Bracan Forlag (1998)

  • Streamsim Web Page: http://www.streamsim.com (2006)

  • Tomich J., Dalton R.L., Deans H., Shallenberger L.: Single-well tracer method to measure resiudal oil saturation. JPT 25, 211–218 (1973)

    Article  Google Scholar 

  • Vanderborght J., Kasteel R., Vereecken H.: Stochastic continuum transport equations for field-scale solute transport: overview of theoretical and experimental results. Vadose Zone J. 5(1), 184–203 (2006)

    Article  Google Scholar 

  • White F.M.: Fluid Mechanics, Chap. 4.7 and 4.10, 5th edn. McGraw-Hill, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sverre G. Johnsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnsen, S.G., Whitson, C.H. Analytical Treatment of a Push–Pull “Echo” Test. Transp Porous Med 77, 399–415 (2009). https://doi.org/10.1007/s11242-008-9266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-008-9266-0

Keywords

Navigation