Transport in Porous Media

, 76:449 | Cite as

A Model of Buoyancy-Driven Two-Phase Countercurrent Fluid Flow

  • Dmitriy SilinEmail author
  • Tad Patzek
  • Sally M. Benson


We seek simple analytical solutions in a model of gas flow driven by a combination of buoyancy, viscous, and capillary forces. Traveling-wave solutions describe propagation of the top and bottom of the gas plume. The top of the plume has low gas saturation, but propagates much faster than the bottom. The theoretical maximum of the velocity of propagation of the top of the plume provides a simple conservative estimate of the time until plume evolution will dramatically slow down. A sequence of rarefaction and traveling-wave solutions characterizes the transition zones between the top and bottom stable regions. The analytical results are applied to studying carbon dioxide flow caused by leaks from deep geological formations used for CO2 storage. The results are also applicable for modeling flow of natural gas leaking from seasonal gas storage, or for modeling of secondary hydrocarbon migration.


Multiphase flow Porous media Gas migration Darcy’s law 


  1. Al-Futaisi A., Patzek T.W.: Impact of wettability on two-phase flow characteristics of sedimentary rock: quasi-static model. Water Resour. Res. 39(2), 1042–1055 (2003)CrossRefGoogle Scholar
  2. Al-Futaisi A., Patzek T.W.: Secondary imbibition in NAPL-invaded mixed-wet sediments. J. Contam. Hydrol. 74(1–4), 61–81 (2004)CrossRefGoogle Scholar
  3. Barenblatt G.I., Gilman A.A.: A mathematical model of non-equilibrium countercurrent capillary imbibition. Eng. Phys. J. 52(3), 46–461 (1987)Google Scholar
  4. Barenblatt G.I., Entov V.M., Ryzhik V.M.: Theory of Fluid Flows through Natural Rocks. Kluwer Academic Publishers, Dordrecht (1990)Google Scholar
  5. Bedrikovetsky, P., De Deus, J., Eurico Altoé, J.: Secondary migration of oil: analytical model. SPE 69411. In: 2001 SPE Latin American and Carribean petroleum engineering conference, Buenos Aires, Argentina, SPE (2001)Google Scholar
  6. Bryant, S.L., Lakshminarasimhan, S., Pope, G.A.: Buoyancy dominated multiphase flow and its impact on geological sequestration of CO2, SPE 99938. In: 2006 SPE/DOE symposium on improved oil recovery,Tulsa, OK, SPE, 22–26 April 2006Google Scholar
  7. Buckley S.E., Leverett M.C.: Mechanisms of fluid displacement in sands. Trans. AIME 146, 149–158 (1942)Google Scholar
  8. Corey A.T.: The interrelations between gas and oil relative permeabilities. Producers Mon. 19, 38–41 (1954)Google Scholar
  9. Crandall M.G., Evans L.C., Lions P.-L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282, 487–502 (1984)CrossRefGoogle Scholar
  10. Daley T.M., Solbau R.D., Ajo-Franklin J.B., Benson S.M.: Continuous active-source seismic monitoring of CO2 injection in a brine aquifer. Geophysics 72(5), A57–A61 (2007)CrossRefGoogle Scholar
  11. Doughty, C.: Modeling geologic storage of carbon dioxide: comparison of non-hysteretic and hysteretic characteristic curves. In: Energy conversion and management. Lawrence Berkeley National Laboratory, Berkeley, CA (2007)Google Scholar
  12. Doughty, C., Myer, L.R.: Scoping calculations on leakage of CO2 in geologic storage. In: McPherson, B., Sundquist, E. (eds.) Science and Technology of Carbon Sequestration. American Geophysical Union, Washington (2008)Google Scholar
  13. Doughty, C., Freifeld, B.M., Trautz, R.C.: Site characterization for CO2 geologic storage and vice versa: the Frio brine pilot, Texas, USA as a case study. Environ. Geol. (2008, in print)Google Scholar
  14. Gasda S.E., Bachu S., Celia M.A.: The potential for CO2 leakage from storage sites in geological media: analysis of well distribution in mature sedimentary basins. Environ. Geol. 46(6–7), 707–720 (2004)CrossRefGoogle Scholar
  15. Hubbert M.K.: Entrapment of petroleum under hydrodynamic conditions. Bull. Am. Assoc. Petrol. Geol. 37(8), 188–200 (1953)Google Scholar
  16. Hubbert M.K.: Darcy’s law and the field equations of the flow of underground fluids. Trans. AIME 207(7), 222–239 (1956)Google Scholar
  17. Homsy G.M.: Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271–311 (1987)CrossRefGoogle Scholar
  18. IPCC.: Intergovernmental Panel on Climate Change Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge (2005)Google Scholar
  19. Landau L.D., Lifshitz E.M.: Course of Theoretical Physics. Fluid Mechanics. Series in Advanced Physics, vol. 6. Addison-Wesley, Reading (1959)Google Scholar
  20. Leverett M.C.: Capillary behavior in porous solids. Trans. AIME 142, 152–169 (1941)Google Scholar
  21. Leverett M.C., Lewis W.B., True M.E.: Dimensional-model studies of oil-field behavior. Trans. AIME 146, 175–193 (1942)Google Scholar
  22. Lindeberg E.: Escape of CO2 from aquifers. Energy Convers. Manage. 38, 235–240 (1997)CrossRefGoogle Scholar
  23. Luan, Z.-A.: Some theoretical aspects of gravity drainage in naturally fractured reservoirs, SPE 28641. In: 69th SPE annual technical conference and exhibition, pp. 357–366. New Orleans, LA, SPE (1994)Google Scholar
  24. Mattax C.C., Kyte J.R.: Imbibition oil recovery from fractured, water-drive reservoir. SPE J. 2, 177–184 (1962)Google Scholar
  25. Muskat M.: Physical Principles of Oil Production. McGraw-Hill, New York (1949)Google Scholar
  26. Nordbotten J.M., Celia M.A., Bachu S.: Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Media 58(3), 339–360 (2005)CrossRefGoogle Scholar
  27. Rapoport L.A.: Scaling laws for use in design and operation of water-oil flow models. Trans. AIME 204, 143–150 (1955)Google Scholar
  28. Riaz, A., Tchelepi, H.A.: Dynamics of vertical displacement in porous media associated with CO2 sequestration. SPE paper 103169. In: 2006 SPE annual technical conference and exhibition, San Antonio, TX, September 24–27, SPE (2006)Google Scholar
  29. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)Google Scholar
  30. Ryzhik V.M.: On capillary imbibibtion by water of an oil-saturated reservoir. Soviet Acad. Izvestia Mech. Gas Fluids 2, 149–151 (1960)Google Scholar
  31. Saffman P.G., Taylor G.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous fluid. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 245(1242), 312–329 (1958)CrossRefGoogle Scholar
  32. Shvidler, M.I., Levi, B.I.: One-dimensional filtration of immiscible fluids. Nedra, Moscow (1970) (in Russian)Google Scholar
  33. Siddique F.I., Lake L.W.: A comprehensive dynamic theory of hydrocarbon migration and trapping SPE 38682. In: 1997 72th annual technical conference and exhibition, San Antonio, TX, SPE (1997)Google Scholar
  34. Silin D.B.: Generalizing Hopf and Lax-Oleinik formulae via conjugate integral. Monatsh. Mathe. 124, 343–364 (1997)CrossRefGoogle Scholar
  35. Silin D.B.: Viscosity solutions via unbounded set-valued integration. Nonlinear Anal. Theory Methods Appl. 31(1–2), 55–90 (1998)CrossRefGoogle Scholar
  36. Silin D.B., Patzek T.W.: On Barenblatt’s model of spontaneous countercurrent imbibition. Transp. Porous Media 54(3), 297–322 (2004)CrossRefGoogle Scholar
  37. Van Genuchten M.Th.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)Google Scholar
  38. Xu T., Apps J.A., Pruess K.: Mineral sequestration of carbon dixoide in a sandstone-shale system. Chem. Geol. 217(3-4), 295–318 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.University of California, BerkeleyBerkeleyUSA
  3. 3.Energy Resources Engineering DepartmentStanford UniversityStanfordUSA

Personalised recommendations