Transport in Porous Media

, Volume 76, Issue 3, pp 421–429 | Cite as

Asymptotic Profiles for the Blasius and Sakiadis flows in a Darcy–Brinkman Isotropic Porous Medium Either with Uniform Suction or with Zero Transverse Velocity

  • Asterios PantokratorasEmail author


The Blasius and Sakiadis flows with uniform suction or with zero transverse velocity, at the asymptotic state, in a Darcy–Brinkman porous medium are investigated in this note. Exact analytical solutions are derived for velocity as well as for the integral quantities. It is found that both the dimensional and non-dimensional displacement thickness, momentum thickness, energy thickness and the absolute wall shear stress are identical in both Blasius and Sakiadis flows at the asymptotic state.


Blasius flow Sakiadis flow Suction Porous medium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali M.E.: The effect of lateral mass flux on the natural convection boundary layers induced by a heated vertical plate embedded in a saturated porous medium with internal heat generation. Int. J. Therm. Sci. 46, 157–163 (2007) doi: 10.1016/j.ijthermalsci.2006.04.008 CrossRefGoogle Scholar
  2. Ali A., Ahmer M.: Homotopy analysis of unsteady boundary layer flow adjacent to permeable stretching surface in a porous medium. Commun. Nonlinear Sci. Numer. Simul. 13, 340–349 (2008) doi: 10.1016/j.cnsns.2006.03.008 CrossRefGoogle Scholar
  3. Bansod V.J.: The effects of blowing and suction on double diffusion by mixed convection over inclined permeable surfaces. Transp. Porous Media 60, 301–317 (2005) doi: 10.1007/s11242-004-6143-3 CrossRefGoogle Scholar
  4. Blasius H.: Grenzschichten in Flussigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1–37 (1908) doi: 10.1007/s11242-004-6143-3 Google Scholar
  5. Cortell R.: Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn. Res. 37, 231–245 (2005) doi: 10.1016/j.fluiddyn.2005.05.001 CrossRefGoogle Scholar
  6. Elbashbeshy E.M.A.: The mixed convection along a vertical plate embedded in a non-Darcian porous medium with suction or injection. Appl. Math. Comput. 136, 139–149 (2003) doi: 10.1016/S0096-3003(02)00023-1 CrossRefGoogle Scholar
  7. Elbashbeshy E.M.A., Bazid M.A.A.: Heat transfer in a porous medium over a stretching surface with internal heat generation and suction or injection. Appl. Math. Comput. 158, 799–807 (2004) doi: 10.1016/j.amc.2003.08.141 CrossRefGoogle Scholar
  8. Givler R.C., Altobelli S.A.: A determination of the effective viscosity for the Brinkman–Forchheimer flow model. J. Fluid Mech. 258, 355–370 (1994) doi: 10.1017/S0022112094003368 CrossRefGoogle Scholar
  9. Iglisch, R.: Exakte Berechnung der laminaren Reibungsschicht an der längsangeströmten ebenen Platte mit homogener Absaugung. Schriften d. dt. Akad. Luftfahrtforschung, 8B, Nr. 1, translation: NACA-RM-1205 (1949) (1944)Google Scholar
  10. Lai F.C., Kulacki F.A.: The influence of surface mass flux on mixed convection over horizontal plates in saturated porous media. Int. J. Heat Mass Transf. 33, 576–579 (1990) doi: 10.1016/0017-9310(90)90191-V CrossRefGoogle Scholar
  11. Magyari E., Keller B.: Effect of viscous dissipation on a quasi-parallel free convection boundary-layer flow over a vertical plate in a porous medium. Transp. Porous Media 51, 231–236 (2003) doi: 10.1023/A:1021930329184 CrossRefGoogle Scholar
  12. Magyari E., Keller B.: New similarity solutions for boundary-layer flow over a horizontal surface in a porous medium. Transp. Porous Media 51, 123–140 (2003) doi: 10.1023/A:1021930329184 CrossRefGoogle Scholar
  13. Magyari E., Keller B.: Backward free convection boundary-layers in a porous media. Transp. Porous Media 55, 285–300 (2004) doi: 10.1023/B:TIPM.0000013329.30281.c2 CrossRefGoogle Scholar
  14. Magyari E., Pop I., Keller B.: The “missing” self-similar free convection boundary-layer flow over a vertical permeable surface in a porous medium. Transp. Porous Media 46, 91–102 (2002) doi: 10.1023/A:1013816831733 CrossRefGoogle Scholar
  15. Malashetty M.S., Shivakumara I.S., Kulkarni S.: The onset of Lapwood-Brinkman convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 48, 1155–1163 (2005) doi: 10.1016/j.ijheatmasstransfer.2004.09.027 CrossRefGoogle Scholar
  16. Merkin J.H.: Free convection boundary layers in a saturated porous medium with lateral mass flux. Int. J. Heat Mass Transf. 21, 1499–1504 (1978) doi: 10.1016/0017-9310(78)90006-6 CrossRefGoogle Scholar
  17. Minkowycz W.J., Cheng P: Local non-similar solutions for free convective flow with uniform lateral mass flux in a porous medium. Lett. Heat Mass Transf. 9, 159–168 (1982) doi: 10.1016/0094-4548(82)90054-6 CrossRefGoogle Scholar
  18. Minkowycz W.J., Cheng P., Moalem F.: The effect of surface mass transfer on buoyancy induced Darcian flow adjacent to a horizontal heated surface. Int. Commun. Heat Mass Transf. 12, 55–65 (1985) doi: 10.1016/0094-4548(82)90054-6 CrossRefGoogle Scholar
  19. Nield D.A.: The modeling of viscous dissipation in a saturated porous medium. ASME J. Heat Transf. 129, 1459–1463 (2007) doi: 10.1115/1.2755069 CrossRefGoogle Scholar
  20. Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer (2006)Google Scholar
  21. Pantokratoras A.: Natural convection of air and water with variable thermophysical properties about a vertical isothermal flat plate embedded in a Darcy porous medium. Prog. Comput. Fluid Dyn. 6(8), 498–510 (2006) doi: 10.1504/PCFD.2006.011322 CrossRefGoogle Scholar
  22. Sakiadis B.C.: Boundary layer behavior on continuous solid surfaces: the boundary layer on a continuous flat surface. AIChE J. 7, 221–225 (1961) doi: 10.1002/aic.690070211 CrossRefGoogle Scholar
  23. Schlichting H., Gersten K.: Boundary layer theory. Springer, Berlin (2003) doi: 10.1002/aic.690070211 Google Scholar
  24. Sezai I.: Flow patterns in a fluid-saturated porous cube heated from below. J. Fluid Mech. 523, 393–410 (2005) doi: 10.1017/S0022112004002137 CrossRefGoogle Scholar
  25. Singh P., Sharma R.N.: Influence of lateral mass flux on mixed convection heat and mass transfer over inclined surfaces in porous media. Heat Mass Transf. 38, 233–242 (2002) doi: 10.1007/s002310100205 CrossRefGoogle Scholar
  26. Ulrich, A.: Theoretische Untersuchungen über die Widerstandsersparnis durch Laminarhaltung mit Absaugung, Aerodynamisches Institut der Technischen Hochschule Braunschweig, Bericht Nr. 44/8, translation: NACA Technical Memorandum 1121 (1947). (1944)Google Scholar
  27. White F.: Viscous Fluid Flow, 3rd edn. McGraw-Hill, New York (2006) doi: 10.1007/s002310100205 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations