Transport in Porous Media

, 76:289 | Cite as

Influence of Internal Structure and Medium Length on Transport and Deposition of Suspended Particles: A Laboratory Study

  • Nasre-Dine AhfirEmail author
  • Ahmed Benamar
  • Abdellah Alem
  • HuaQing Wang


A laboratory study was undertaken on the transport and the deposition of suspended particles (silt of modal diametre 6 µm) in three columns of different length, filled with glass beads or gravel. Tracer tests were carried out at various flow velocities by short pulses of a mixture of suspended particles/dissolved tracer. The breakthrough curves were competently described with the analytical solution of a convection dispersion equation with a first-order deposition rate and the hydro-dispersive parameters were deduced. For the same experimental conditions, the results showed a difference in the behaviour of the suspended particles transport and deposition rates within the two porous media tested. The internal structure of both media governs the particle-grain collision frequency as well as the particles trapping. The scale effect was highlighted and affects the dispersivity, the size exclusion effect, the recovery rates and the deposition rates. Longitudinal dispersion increases with mean pore velocity and is described with a nonlinear relationship. The dispersivity increases with the column length. The size exclusion effect is more important in the short column. The recovery rate increases with flow velocity and decreases while increasing column length. The deposition rates increases until a critical flow velocity then decreases. This critical velocity is also sensitive to the scale effect, and increases with the column length.


Suspended particles Size exclusion effect Dispersivity Internal structure Deposition rate 


Latin Symbols


Dissolved tracer/suspended particle concentration in solution


Initial concentration


Relative concentration, equals CV P/m


Uniformity coefficient


Median grain size


Column inner diametre


Molecular diffusion coefficient


Longitudinal dispersion coefficient


Hydraulic conductivity


The deposition rate coefficient


Column length


Masse of particle injected


Péclet number


Flow rate


Recovery rate




Convection time


Darcy’s velocity


Critical Darcy’s velocity


The average travel velocity of particles/dissolved tracer


Relative velocity factor, equals (u SP − u T)/u T


The average travel velocity of suspended particles


The average travel velocity of dissolved tracer


Solute injected volume


Pore volume of the porous medium


Travel distance (column length)

Greek Symbols


Longitudinal dispersivity


Dirac function


A coefficient (in \({\alpha_{\rm L}=\kappa d_{50}^\beta}\))


A constant (in \({\alpha_{\rm L}=\kappa d_{50}^\beta}\))




  1. Ahfir N.-D., Wang H.Q., Benamar A., Alem A., Massei N., Dupont J.-P.: Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeol. J. 15, 659–668 (2007)CrossRefGoogle Scholar
  2. Bear J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)Google Scholar
  3. Benamar A., Wang H.Q., Ahfir N.-D., Alem A., Massei N., Dupont J.P.: Inertial effects on the transport and the rate deposition of fine particles in a soil. C. R. Geosci. 337, 497–504 (2005)CrossRefGoogle Scholar
  4. Bonelli S., Brivois O., Borghi R., Benahmed N.: On the modelling of piping erosion. C. R. Mecanique 334, 555–559 (2006)Google Scholar
  5. Bouwer H.: Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J. 10, 121–142 (2002)CrossRefGoogle Scholar
  6. Brusseau M.L.: The influence of solute size, pore water velocity, and intraparticle porosity on solute dispersion and transport in soil. Water Resour. Res. 29(04), 1071–1080 (1993)CrossRefGoogle Scholar
  7. de Marsily G.: Quantitative Hydrogeology. Groundwater hydrology for engineers. Academic Press INC, New York (1986)Google Scholar
  8. Detay M.: Le forage d’eau: Réalisation, entretien, réhabilitation. Masson, Paris (1993)Google Scholar
  9. Dieulin, A.: Propagation de pollution dans un aquifère alluvial: l’effet de parcours. PhD Thesis, Université Paris-6, France (1980)Google Scholar
  10. Dodds J.: La chromatographie hydrodynamique [Hydrodynamic chromatography]. Analusis 10, 109–119 (1982)Google Scholar
  11. Ebach E.A., Whate R.R.: Mixing of fluids flowing through beds of packed solids. J. Am. Inst. Chem. Eng. 4, 161–164 (1958)Google Scholar
  12. Elimelech M., Gregory J., Jia X., Williams R.A.: Particle Deposition and Aggregation: Measurement, Modeling, and Simulation. Butterworth-Heinemann, Oxford (1995)Google Scholar
  13. Frey J.M., Schmitz P., Dufreche I., Gohr Pinheiro I.: Particle deposition in porous media: analysis of hydrodynamic and weak inertial effects. Transp. Porous Media 37, 25–54 (1999)CrossRefGoogle Scholar
  14. Gohr Pinheiro I., Schmitz P., Houi D.: Particle capture in porous media when physico-chemical effects dominate. Chem. Eng. Sci. 54, 3801–3813 (1999)CrossRefGoogle Scholar
  15. Grolimund D., Borkovec M., Barmettler K., Sticher H.: Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study. Environ. Sci. Technol. 30, 3118–3123 (1996)CrossRefGoogle Scholar
  16. Grolimund D., Elimelich M., Borcovec M., Barmettler K., Kretzschmar R., Sticher H.: Transport of in situ mobilized colloidal particles in packed soil columns. Environ. Sci. Technol. 32, 3562–3569 (1998)CrossRefGoogle Scholar
  17. Herzig J.P., Leclerc D.M., Le Goff P.: Flow of suspension through porous media: application to deep bed filtration. Indian Eng. Chem. 62, 8–35 (1970)CrossRefGoogle Scholar
  18. Hu Q., Brusseau M.L.: The effect of solute size on diffusive-dispersion transport in porous media. J. Hydrol. 158, 305–317 (1994)CrossRefGoogle Scholar
  19. Kanti Sen T., Khilar K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interf. Sci. 119, 71–96 (2006)CrossRefGoogle Scholar
  20. Koltz D., Seiler K.P., Moser H., Neumaier F.: Dispersivity and velocity relationship from laboratory and field experiments. J. Hydrol. 45, 169–184 (1980)CrossRefGoogle Scholar
  21. Kretzschmar R., Barmettler K., Grolimund D., Yan Y.D., Borkovec M., Sticher H.: Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour. Res. 33, 1129–1137 (1997)CrossRefGoogle Scholar
  22. Kretzschmar R., Borkovec M., Grolimund D., Elimelech M.: Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 66, 121–194 (1999)CrossRefGoogle Scholar
  23. Massei N., Lacroix M., Wang H.Q., Dupont J.P.: Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J. Contamin. Hydrol. 57, 21–39 (2002)CrossRefGoogle Scholar
  24. McDowell-Boyer L.M., Hunt J.R., Sitar N.: Particle transport through porous media. Water Resour. Res. 22(13), 1901–1921 (1986)CrossRefGoogle Scholar
  25. Moghadasi J., Müller-Steinhagen H., Jamialahmadi M., Sharif A.: Theoretical and experimental study of particle movement and deposition in porous media during water injection. J. Petrol. Sci. Eng. 43, 163–181 (2004a)CrossRefGoogle Scholar
  26. Moghadasi J., Müller-Steinhagen H., Jamialahmadi M., Sharif A.: Model study on the kinetics of oil field formation damage due to salt precipitation from injection. J. Petrol. Sci. Eng. 43, 201–217 (2004b)CrossRefGoogle Scholar
  27. Pfannkuch H.O.: Contribution à l’étude des déplacements de fluides miscibles dans un milieu poreux [Contribution to the study of miscible fluids displacements in a porous medium]. Rev. Inst. Fr. Pétrol. 18, 215–270 (1963)Google Scholar
  28. Porel, G.: Transfert de soluté en aquifère crayeux: causes de modifications des résultats de traçages. PhD Thesis, Lille University, France (1988)Google Scholar
  29. Roychoudhury A.N.: Dispersion in unconsolidated aquatic sediments. Estuar. Coast. Shelf Sci. 53, 745–757 (2001)CrossRefGoogle Scholar
  30. Ryan J.N., Elimelech M.: Colloid mobilization and transport in groundwater. Colloids Surf. A: Physicochem. Eng. Asp. 107, 1–56 (1996)CrossRefGoogle Scholar
  31. Santos A., Bedrikovetsky P.: A stochastic model for particulate suspension flow in porous media. Transp. Porous Media 62, 23–53 (2006)CrossRefGoogle Scholar
  32. Shapiro A.A., Bedrikovetsky P.G., Santos A., Medvedev O.O.: A stochastic model for filtration of particulate suspensions with incomplete pore plugging. Transp. Porous Media 67, 135–164 (2007)CrossRefGoogle Scholar
  33. Vigneswaran S., Suazo Ronillo B.: A detailed investigation of physical and biological clogging during artificial recharge. Water Air Soil Pollut. 35, 119–140 (1987)CrossRefGoogle Scholar
  34. Vigneswaran S., Jeyaseelan S., Das Gupta A.: A pilot-scale investigation of particle retention during artificial recharge. Water Air Soil Pollut. 25, 1–13 (1985)CrossRefGoogle Scholar
  35. Wang H.Q.: Transferts de matières en milieu saturé: outils mathématiques et modélisation numérique Mémoire HDR. Université de Rouen, France (2001)Google Scholar
  36. Wang H.Q., Crampon N., Huberson S., Garnier J.M.: Linear graphical method for determining hydrodispersive characteristics in tracer experiments with instantaneous injection. J. Hydrol. 95, 143–154 (1987)CrossRefGoogle Scholar
  37. Wang H.Q., Lacroix M., Massei N., Dupont J.P.: Particle transport in porous medium: determination of hydrodispersive characteristics and deposition rates. C. R. Acad. Sci. Paris Sci. Terre Planèt. 331, 97–104 (2000)Google Scholar
  38. Weronski P., Walz J.Y., Elimelech M.: Effect of depletion interactions on transport of colloidal particles in porous media. J. Colloid Interf. Sci. 262, 372–383 (2003)CrossRefGoogle Scholar
  39. Xu M., Eckstein Y.: Statistical analysis of the relationships between dispersivity and other physical properties of porous media. Hydrogeol. J. 5, 4–20 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nasre-Dine Ahfir
    • 1
    Email author
  • Ahmed Benamar
    • 1
  • Abdellah Alem
    • 1
  • HuaQing Wang
    • 1
  1. 1.Laboratoire d’Ondes et Milieux Complexes FRE - 3102 CNRSUniversité du HavreLe HavreFrance

Personalised recommendations