Advertisement

Transport in Porous Media

, Volume 76, Issue 2, pp 265–287 | Cite as

Conservative Solute Versus Heat Transport in Porous Media During Push-pull Tests

  • A. VandenbohedeEmail author
  • A. Louwyck
  • L. Lebbe
Article

Abstract

Both heat and solute transport in porous media are described by partial differential equations of similar form. Nevertheless, observing these phenomena in the field on the scale of well tests clearly indicates dissimilar behaviour. This article studies the aforementioned transport processes by interpreting two push-pull tests of different duration. In both tests, chloride is applied as a conservative tracer and lower temperature water is injected in higher temperature pristine water at different flow rates. Simulation and interpretation of the tests are performed by means of ReacTrans, a two-dimensional, axially symmetric, finite-difference, solute and heat transport model. Since conflicting views exist in literature on the relation between solute and thermal dispersivity, analysis of field observations focuses on parameters which describe aquifer characteristics affecting these processes. Parameter estimation is conducted through sensitivity analysis and collinear diagnosis in order to identify derivable parameters. It is concluded that longitudinal solute dispersivity and thermal diffusivity could be inferred accurately from chloride and temperature data sampled from the injection/extraction well respectively. Involving supplementary data sampled from an observation well enables derivation of effective porosity from chloride data and thermal retardation from temperature data. Moreover, it is inferred that longitudinal solute dispersivity is scale dependent. Thermal diffusivity, however, seems not to be. This points to dissimilar development of transition zones during solute and heat transport. It is concluded that conductive transport of heat is much more important than effects of velocity variations through the pore space.

Keywords

Heat transport Conservative solute transport Modelling Parameter identification Dispersivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson M.P.: Heat as a ground water tracer. Ground Water 43(6), 951–968 (2006)CrossRefGoogle Scholar
  2. Bear J.: Dynamics of Fluids in Porous Media. American Elsevier Publishing Company Inc., New York (1972)Google Scholar
  3. Belsley D.A.: Conditioning Diagnostics: Collinearity and Weak Data in Regression. Willey, New York (1990)Google Scholar
  4. Bravo, H.R., Feng, J., Hunt, R.J.: Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system. Water Resour. Res. 38(8), doi: 10.1029/2000WR000172 (2002)
  5. Bredehoeft J.D., Papadopoulos I.S.: Rates of vertical ground-water movement estimate from the Earth’s thermal profile. Water Resour. Res. 1(2), 325–328 (1965)CrossRefGoogle Scholar
  6. Carrera J., Neuman S.P.: Estimation of aquifer parameters under transient and steady state conditions, 1, Maximum likelihood method incorporating prior information. Water Resour. Res. 22(2), 199–210 (1986)CrossRefGoogle Scholar
  7. Constantz J., Cox M.H., Su G.W.: Comparison of heat and bromides as ground water tracers near streams. Ground Water 41(5), 647–656 (2003)CrossRefGoogle Scholar
  8. deMarsily G.: Quantitive Hydrogeology. Academic Press, San Diego, California (1986)Google Scholar
  9. Domenico P.A., Schwartz F.W.: Physical and Chemical Hydrogeology, 2nd edn. Wiley, New York (1998)Google Scholar
  10. Gelhar L.W., Collins M.A.: General analysis of longitudinal dispersion in nonuniform flow. Water Resour. Res. 15(6), 1511–1521 (1971)CrossRefGoogle Scholar
  11. Gelhar L.W., Welty C., Rehfeldt K.R.: A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 28(7), 1955–1974 (1992)CrossRefGoogle Scholar
  12. Hopmans J.W., Simunek J., Bristow K.L.: Indirect estimation of soil thermal properties and water flux using heat pulse probe measurements: geometry and dispersion effects. Water Resour. Res. 38(1), 7-1–7-13 (2002)CrossRefGoogle Scholar
  13. Ingebritsen S.E., Sanford W.E.: Groundwater in Geological Processes. Cambridge University Press, Cambridge, UK (1998)Google Scholar
  14. Istok J.D., Humphrey M.D., Schroth M.H., Hyman M.R., O’Reilly K.T.: Single-well, “push-pull” test for in situ determination of microbial activities. Ground Water 35(4), 619–631 (1997)CrossRefGoogle Scholar
  15. Istok J.D., Field J.A., Schroth M.H.: In situ determination of subsurface microbial enzyme kinetics. Ground Water 39(3), 348–355 (2001)CrossRefGoogle Scholar
  16. Konikow, L.F., Bredehoeft, J.D.: Computer model of two-dimensional solute transport and dispersion in ground water. USGS Tech. of Water-Resources investigations, Book 7, Chapter C2 (1978)Google Scholar
  17. Laga, P., Vandenberghe, N.: The Knokke well (11E/138) with a description of the De Haan (22W/276) and Oostduinkerke (35E/142) wells. Brussel: Belg. Geol. Dienst. Toel. Verh. Geol. Mijnk. Belg. 29, (1990)Google Scholar
  18. Lebbe L.: Hydraulic Parameter Identification. Generalised Interpretation Method for Single and Multiple Pumping Tests. Springer-Verlag, Berlin Heidelberg (1999)Google Scholar
  19. Mertooetomo, M.: Modellering van een grondwaterwinning op basis van de hydrogeologische kenmerken van het veellagig grondwaterreservoir te Koksijde-Oostduinkerke (België). Ph.D. dissertation, Ghent University. (Simulation of a water catchment based on the hydrogeological characteristics of a multiple layer aquifer at Koksijde, Oostduinkerke, Belgium; only in Dutch) (1995)Google Scholar
  20. Niswonger, R.G., Prudic, D.E.: Modeling heat as a tracer to estimate streambed seepage and hydraulic conductivity. In: Stonestrom, D.A., Constantz, J. (eds.) Heat as a Tool for Studying the Movement of Ground Water Near Streams, pp. 81–89. USGS circular 1260 Reston, Virginia USGS (2003)Google Scholar
  21. Smith L., Chapman D.S.: On the thermal effects of groundwater flow1. Regional scale systems. J. Geophys. Res. 88(B1), 593–608 (1983)CrossRefGoogle Scholar
  22. Schroth M.H., Kleikemper J., Bolliger C., Bernasconi S.M., Zeyer J.: In situ assessment of microbial sulfate reduction in a petroleum-contaminated aquifer using push-pull tests and stable sulfur isotope analyses. J. Contam. Hydrol. 51, 179–195 (2001)CrossRefGoogle Scholar
  23. Stallman R.W.: Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J. Geophys. Res. 70(12), 2821–2827 (1965)CrossRefGoogle Scholar
  24. Sternau, R., Schwarz, J., Mercado, A., Harpaz, Y., Nir, A., Halevy, E.: Radiosotope tracers in large-scale recharge studies of groundwater. In: Proceedings of the Symposium on Isotopes in Hydrology, International Union of Geodesy and Geophysics, pp. 489–505. Vienna, 14–18 November 1967Google Scholar
  25. Vandenbohede, A., Lebbe, L.: 3D density dependent numerical model of a tracer test performed in the Belgian coastal plain. In: Proceedings of the first Geologica Belgica International Meeting, vol. 12, pp. 223–226. Leuven, 11–15 September 2002, Aardkundige MededelingenGoogle Scholar
  26. Vandenbohede A., Lebbe L.: Combined interpretation of pumping and tracer tests: theoretical considerations and illustration with a field test. J. Hydrol. 277(1–2), 134–149 (2003)CrossRefGoogle Scholar
  27. Vandenbohede A., Lebbe L.: Double forced gradient tracer test: performance and interpretation of a field test using a new solute transport model. J. Hydrol. 317, 155–170 (2006)CrossRefGoogle Scholar
  28. Vandenbohede A., Louwyck A., Lebbe L.: Identification and reliability of microbial aerobic respiration and denitrification kinetics using a single-well push-pull field test. J. Contam. Hydrol. 95, 42–56 (2008a)CrossRefGoogle Scholar
  29. Vandenbohede, A., Van Houtte, E., Lebbe, L.: Study of the feasibility for an ASR system in a deep aquifer in Belgium. Hydrol. Sci. J. (in press) (2008b)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Research Unit Groundwater ModellingGhent UniversityGent, Oost-VlaanderenBelgium

Personalised recommendations