Advertisement

Transport in Porous Media

, Volume 76, Issue 2, pp 247–263 | Cite as

A Finite Element-based Heuristic Estimation of Local Preform Permeability for Resin Transfer Molding

  • Xugang Ye
  • Jingjing Qiu
  • Chuck ZhangEmail author
  • Richard Liang
  • Ben Wang
Article

Abstract

Uniformity of fabrics significantly affects the resin flow behavior in the resin transfer molding (RTM) process. Due to fabric defects or improper fiber preform preparation/loading, non-uniformity in fabric structure frequently occurs in RTM processing and creates local permeability variations. Such variations often lead to unbalanced resin flow patterns and thus result in defects of finished composite parts. In RTM process modeling, an accurate estimation of the whole field permeability profile of the fiber preform is critical for predicting resin flow pattern correctly. In this article, a finite element-based heuristic computing method is introduced for estimating the in situ whole-field isotropic permeability profile of the preform using a steady flow of gas. Compared with conventional approaches, this method is effective in measuring local permeability variations and applicable to molds with complex 2-D geometries, as well as diverse injection strategies. Several case studies were presented with experimental designs and numerical computations to illustrate the effectiveness and efficiency of the method.

Keywords

Porous media Heuristic computing method Darcy’s law Permeability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belov E.B., Lomov S.V., Verpoest I., Peters T., Roose D., Parnas R.S., Hoes K., Sol H.: Modelling of permeability of textile reinforcements: Lattice Boltzmann method. Compos. Sci. Technol. 64(7–8), 1069–1080 (2004)CrossRefGoogle Scholar
  2. Bickerton S., Sozer E.M., Simacek P., Advani S.G.: Fabric structure and mold curvature effects on preform permeability and mold filling in the RTM process. Part II. Predictions and comparisons with experiments. Compos.-A: Appl. Sci. Manuf. 31(5), 439–458 (2000)CrossRefGoogle Scholar
  3. Boccard A., Lee W.I., Springer G.S.: Model for determining the vent locations and the fill time of resin transfer moldings. J. Compos. Mater. 29(3), 306–333 (1995)Google Scholar
  4. Chan M.T., Herman G.T., Levitan E.: Bayesian image reconstruction using image-modeling Gibbs priors. Int. J. Imaging Syst. Technol. 9(2–3), 85–98 (1998)CrossRefGoogle Scholar
  5. Delerue J.F., Lomov S.V., Parnas R.S., Verpoest I., Wevers M.: Pore network modeling of permeability for textile reinforcements. Polym. Compos. 24(3), 344–357 (2003)CrossRefGoogle Scholar
  6. Ding L., Shih C., Liang Z., Zhang C., Wang B.: In situ measurement and monitoring of whole-field permeability profile of fiber preform for liquid composite molding processes. Compos.-A: Appl. Sci. Manuf. 34(8), 779–789 (2003)CrossRefGoogle Scholar
  7. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 721–741 (1984)Google Scholar
  8. Gibson P.W., Charchi M.: Modeling convection/diffusion processes in porous textiles with inclusion of humidity-dependent air permeability. Int. Commun. Heat Mass Transf. 24(5), 709–724 (1997)CrossRefGoogle Scholar
  9. Givens G.H., Hoeting J.A.: Computational Statistics. John Wiley & Sons, New York (2005)Google Scholar
  10. Gokce A., Advani S.G.: Permeability estimation with the method of cells. J. Compos. Mater. 35(8), 713–728 (2001)CrossRefGoogle Scholar
  11. Hoes K., Dinescu D., Sol H., Vanheule M., Parnas R.S., Luo Y., Verpoest I.: New set-up for measurement of permeability properties of fibrous reinforcements for RTM. Compos.-A: Appl. Sci. Manuf. 33(7), 959–969 (2002)CrossRefGoogle Scholar
  12. Kim S.K., Opperer J.G., Kim D.H., Daniel I.M.: Determination of in-plane permeability of fiber preforms by the gas flow method using pressure measurements. Polym. Compos. 24(1), 34–44 (2003a)CrossRefGoogle Scholar
  13. Kim S.K., Opperer J.G., Daniel I.M., Isaac M.: Gas flow method for detecting local preform defects by inverse estimation of space-varying permeability. J. Compos. Mater. 37(15), 1367–1383 (2003b)CrossRefGoogle Scholar
  14. Lai Y.H., Khomami B., Kardos J.L., John L.: Accurate permeability characterization of preforms used in polymer matrix composite fabrication processes. Polym. Compos. 18(3), 368–377 (1997)CrossRefGoogle Scholar
  15. Laurent-Mounier A., Binetruy C., Krawczak P.: Multipurpose carbon fiber sensor design for analysis and monitoring of the resin transfer molding of polymer composites. Polym. Compos. 26(5), 717–730 (2005)CrossRefGoogle Scholar
  16. Lin M.Y., Murphy M.J., Hahn H.T.: Resin transfer molding process optimization. Compos-A: Appl. Sci. Manuf. 31(4), 361–371 (2000)CrossRefGoogle Scholar
  17. Lundstrom T.S., Toll S., Hakanson J.M.: Measurement of the permeability tensor of compressed fibre beds. Transp. Porous Media 47(3), 363–380 (2002)CrossRefGoogle Scholar
  18. Martinez W.L., Martinez A.R.: Computational Statistics Handbook with Matlab. Chapman & Hall/CRC Press, Boca Raton FL (2002)Google Scholar
  19. Mathur R., Fink B.K., Advani S.G.: Use of genetic algorithms to optimize gate and vent locations for the resin transfer molding process. Polym. Compos. 20(2), 167–178 (1999)CrossRefGoogle Scholar
  20. Nilsson L., Stenstrom S.: Study of the permeability of pulp and paper. Int. J. Multiph Flow 23(1), 131–153 (1997)CrossRefGoogle Scholar
  21. Pandelidis I., Zou Q.: Optimization of injection molding design. 1. Gate location optimization. Polym. Eng. Sci. 30(15), 873–882 (1990)CrossRefGoogle Scholar
  22. Pardalos, P.M., Resende, M.: Handbook of Applied Optimization. Oxford University Press (2002)Google Scholar
  23. Pardalos, P.M., Romeijn, E.: Handbook of Global Optimization-Volume 2: Heuristic Approaches. Kluwer Academic Publishers (2002)Google Scholar
  24. Parnas R.S., Salem A.J.: Comparison of the unidirectional and radial in-plane flow of fluids through woven composite reinforcements. Polym. Compos. 14(5), 383–394 (1993)CrossRefGoogle Scholar
  25. Parnas R.S., Howard J.G., Luce T.L., Advani S.G.: Permeability characterization. Part 1: a proposed standard reference fabric for permeability. Polym. Compos. 16(6), 429–445 (1995)CrossRefGoogle Scholar
  26. Rodriguez E., Giacomelli F., Vazquez A.: Permeability-porosity relationship in RTM for different fiberglass and natural reinforcements. J. Compos. Mater. 38(3), 259–268 (2004)CrossRefGoogle Scholar
  27. Rudd C.D., Long A.C., McGeehin P., Smith P.: In-plane permeability determination for simulation of liquid composite molding of complex shapes. Polym. Compos. 17(1), 52–59 (1996)CrossRefGoogle Scholar
  28. Simacek P., Advani S.G.: Permeability model for a woven fabric. Polym. Compos. 17(6), 887–899 (1996)CrossRefGoogle Scholar
  29. Starr T.L., Hablutzel N.: Measurement of gas transport through fiber preforms and densified composites for chemical vapor infiltration. J. Am. Ceram. Soc. 81(5), 1298–1304 (1998)CrossRefGoogle Scholar
  30. Symposium on Flow through Porous Media: Flow Through Porous Media. American Chemical Society, Washington, D. C. (1969)Google Scholar
  31. Um M.K., Daniel I.M., Childs B.W.: A gas flow method for determination of in-plane permeability of fiber preforms. Polym. Compos. 22(1), 47–56 (2001)CrossRefGoogle Scholar
  32. Visconti I.C., Langella A., Durante M.: Analysis of transversal permeability for different types of glass fiber reinforcement. Appl. Compos. Mater. 10(2), 119–127 (2003)CrossRefGoogle Scholar
  33. Weir G.J.: The direct inverse problem in aquifers. Water Resour. Res. 25(4), 749–753 (1989)CrossRefGoogle Scholar
  34. Young W.B.: Gate location optimization in liquid composite molding using genetic algorithms. J. Compos. Mater. 28(12), 1098–1113 (1994)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Xugang Ye
    • 1
  • Jingjing Qiu
    • 1
  • Chuck Zhang
    • 1
    Email author
  • Richard Liang
    • 1
  • Ben Wang
    • 1
  1. 1.Department of Industrial & Manufacturing Engineering, High-Performance Materials InstituteFlorida A&M University–Florida State University College of EngineeringTallahasseeUSA

Personalised recommendations