Advertisement

Transport in Porous Media

, Volume 75, Issue 2, pp 203–221 | Cite as

Modeling the Enhanced Bioremediation of Organic Contaminants in Pyrite-containing Aquifers

  • Murat Savas Sarioglu
  • Nadim K. CoptyEmail author
Article
  • 152 Downloads

Abstract

The bioremediation of organic contaminants in the subsurface is strongly influenced by the existing geochemical environment. In this study a coupled reactive transport and geochemical model is developed for the simulation of enhanced bioremediation of organic contamination in the presence of pyrite. The two-dimensional model allows for the simulation of both kinetically defined as well as geochemical equilibrium reactions. The model is applied to a hypothetical pyrite-containing aquifer contaminated with petroleum hydrocarbons. Oxygen injected into the aquifer to enhance contaminant biodegradation reacts with pyrite resulting in reduced oxygen availability, acidification of the subsurface environment and, subsequently, the inadvertent inhibition of the microbial activity. The reactive transport and geochemical model is used to quantify these processes. The dominance of the various chemical reactions and the sensitivity of the biodegradation on pyrite content are evaluated. Through groundwater pH manipulation, the interference of pyrite with the intended remedial action is partially mitigated. It is shown that when oxygen availability is a limiting factor, the optimal pH that would maximize hydrocarbon degradation may significantly differ from the pH value that maximizes bacterial activity.

Keywords

Groundwater contamination Reactive transport modeling Enhanced bioremediation Pyrite oxidation Geochemical model Aerobic biodegradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, R.H., Loague, K.: A compartmentalized solute transport model for redox zones in contaminated aquifers: 1 Theory and development. Water Resour. Res. 36(8), 2001–2013 (2000)CrossRefGoogle Scholar
  2. Alexander, M.: Biodegradation and Bioremediation. Academic Press, San Diego (1999)Google Scholar
  3. Barry, D.A., Prommer, H., Miller, C.T., Engesgaard, P., Brun, A.: Modelling the fate of oxidisable organic contaminants in groundwater. Adv. Water Resour. 25, 945–983 (2002)CrossRefGoogle Scholar
  4. Baveye, P., Vandevivere, P., Hoyle, B.L., DeLeo, P.C., de Lozada, D.S.: Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Critical Rev. Environ. Sci. Technol. 28(2), 123–191 (1998)CrossRefGoogle Scholar
  5. Bonnissel-Gissinger, P., Alnot, M., Ehrhardt, J., Behra, P.: Surface oxidation of pyrite as a function of pH. Environ. Sci. Technol. 32, 2839–2845 (1998)CrossRefGoogle Scholar
  6. Borden, R.C., Bedient, P.B.: Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation: 1. Theoretical development. Water Resour. Res. 22(13), 1973–1982 (1986)CrossRefGoogle Scholar
  7. Brun, A., Engesgaard, P., Christense, T.H., Rosbjerg, D.: Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark. J. Hydrol. 256, 228–247 (2002a)CrossRefGoogle Scholar
  8. Brun, A., Engesgaard, P.: Modelling of transport and biogeochemical processes in pollution plumes: literature review and model development. J. Hydrol. 256, 211–227 (2002b)CrossRefGoogle Scholar
  9. Carrayrou, J., Mose, R., Behra, P.: Operator-splitting procedures for reactive transport and comparison of mass balance errors. J. Contam. Hydrol. 68, 239–268 (2004)CrossRefGoogle Scholar
  10. Chapelle, F.H.: Ground-water Microbiology and Geochemistry. Wiley, New York (1993)Google Scholar
  11. Chen, Y.M., Abriola, L., Alvarez, P.J.J., Anid, P.J., Vogel, T.M.: Modeling transport and biodegradation of benzene and toluene in sandy aquifer material: comparisons with experimental measurements. Water Resour. Res. 28(7), 1833–1847 (1992)CrossRefGoogle Scholar
  12. Clement, T.P.: RT3D – A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Systems. Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967 (1997)Google Scholar
  13. Deutsch, W.J.: Groundwater Geochemistry, Fundamentals and Applications to Contamination. Lewis Publishers (1997)Google Scholar
  14. Dragun, J.: The Soil Chemistry of Hazardous Material. Dragun Corporation (1998)Google Scholar
  15. Eckert, P., Appelo, C.A.J.: Hydrogeochemical modeling of enhanced benzene, toluene, ethylbenzene, xylene (BTEX) remediation with nitrate. Water Resour. Res. 38(8), 1130 (2002), doi: 10.1029/2001WR000692 CrossRefGoogle Scholar
  16. Elberling, B., Balic-Zuni, T., Edsberg, A.: Spatial variations and controls of acid mine drainage generation. Environ. Geol. 43, 806–813 (2003)Google Scholar
  17. El-Farhan, Y.H., Scow, K.M., de Jonge, L.W., Rolston, D.E., Moldrup, P.: Coupling transport and biodegradation of toluene and trichloroethylene in unsaturated soils. Water Resour. Res. 34(3), 437–445 (1998)CrossRefGoogle Scholar
  18. El-Kadi, A.I.: Hydrocarbon biodegradation in tidal aquifers with water-saturation and heat inhibition effects. J. Contam. Hydrol. 51(1–2), 97–125 (2001)CrossRefGoogle Scholar
  19. Essaid, H.I., Bekins, B.A., Godsy, E.M., Warren, E., Baedecker, M.J., Zheng, C.: Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site. Water Resour. Res. 31(12), 3309–3327 (1995)CrossRefGoogle Scholar
  20. Eweis, J.B., Ergas, S.J., Chang, D.P.Y., Schroeder, E.D.: Bioremediation Principles. WCB McGraw-Hill, Boston (1998)Google Scholar
  21. Gerke, H.H., Molson, J.W., Frind, E.O.: Modelling the effect of chemical heterogeneity on acidification and solute leaching in overburden mine spoils. J. Hydrol. 209, 166–185 (1998)CrossRefGoogle Scholar
  22. Gibb, A., Chu, A., Wong, R.C.K., Goodman, R.H.: Bioremediation kinetics of crude oil at 5°C. J. Environ. Eng. 127(9), 818–824 (2001)CrossRefGoogle Scholar
  23. Griffioen, J., Van der Grift, B., Buijs, A., Hartog, N.: Oxygen consumption of natural reductants in aquifer sediment related to in situ bioremediation. In: 5th International In-Situ and On-Site Bioremediation Symposium 5(3). pp. 463–468. Battelle Press, San Diego, USA (1999)Google Scholar
  24. Hao, Y., Dick, W.A.: Potential inhibition of acid formation in pyritic environments using calcium sulfite byproduct. Environ. Sci. Technol. 34, 2288–229 (2000)CrossRefGoogle Scholar
  25. Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, G.: MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model-User Guide To Modularization Concepts And The Ground-Water Flow Process U.S. Geologıcal Survey, Open-File Report 00-92, 2000Google Scholar
  26. Harremoes, P., Henze, M., Arvin, E., Dahi, E.: Teoretisk Vandhygiejne. Polyteknisk Forlag, Lyngby (1980)Google Scholar
  27. Hartog, N., Griffioen, J., van Der Weijden, C.H.: Distribution and reactivity of O2-reducing components in sediments from a layered aquifer. Environ. Sci. Technol. 36(11), 2436–2442 (2002)CrossRefGoogle Scholar
  28. Holden, P.A., Firestone, M.K.: Soil microorganisms in soil cleanup: How can we improve our understanding. J. Environ. Qual. 26(1), 32–40 (1997)CrossRefGoogle Scholar
  29. Hunter, K.S., Wang, Y., Van Cappellen, P.: Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. J. Hydrol. 209(1–4), 53–80 (1998)CrossRefGoogle Scholar
  30. Kaluarachchi, J.J., Morshed, J.: Critical assessment of the operator-splitting technique in solving the advection– dispersion-reaction equation: 1. First-order reaction. Adv. Water Resour. 18, 89–100 (1995a)CrossRefGoogle Scholar
  31. Kaluarachchi, J.J., Morshed, J.: Critical assessment of the operator-splitting technique in solving the advection–dispersion-reaction equation: 2. Monod kinetics and coupled transport. Adv. Water Resour. 18, 101–110 (1995b)CrossRefGoogle Scholar
  32. Kastner, M., Breuer-Jam, M., Mahro, B.: Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl. Environ. Microbiol. 64(1), 359–362 (1998)Google Scholar
  33. Kinzelbach, W., Schafer, W.: Numerical modeling of natural and enhanced denitrification processes in aquifer. Water Resour. Res. 27(6), 1123–1135 (1991)CrossRefGoogle Scholar
  34. Langwaldt, J., Puhakka, J.: Competition for oxygen by iron and 2,4,6-trichlorophenol oxidizing bacteria in boreal groundwater. Water Res. 37, 1378–1384 (2003)CrossRefGoogle Scholar
  35. Leahy, J.H., Colwell, R.: Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54(3), 305–315 (1990)Google Scholar
  36. Lowson, R.T.: Aqueous oxidation of pyrite by molecular oxygen. Chem. Rev. 82(5), 462–497 (1982)CrossRefGoogle Scholar
  37. MacCormack, W.P., Fraile, E.R.: Characterization of a hydrocarbon degrading psychrotrophic Antarctic bacterium. Antarct. Sci. 9(2), 150–155 (1997)Google Scholar
  38. Manahan, S.E.: Environmental Chemistry, 7th edn. Lewis Publishers, Boca Raton (1999)Google Scholar
  39. McKnight, D.M., Kimball, B.A., Runkel, R.L.: pH dependence of iron photoreduction in a rocky mountain stream affected by acid mine drainage. Hydrol. Process. 15, 1979–1992 (2001)CrossRefGoogle Scholar
  40. McNab, W.W., Narasimhan, T.N.: Modeling reactive transport of organic compounds in groundwater using a partial redox disequilibrium approach. Water Resour. Res. 30(9), 2619–2635 (1994)CrossRefGoogle Scholar
  41. McNab, W.W., Narasimhan, T.N.: Reactive Transport of petroleum hydrocarbon constituents in a shallow aquifer: Modeling geochemical interactions between organic and inorganic species. Water Resour. Res. 31(8), 2027–2033 (1995)CrossRefGoogle Scholar
  42. Nicholson, R.V., Gillham, R.W., Reardon, E.J.: Pyrite oxidation in carbonate buffered solution: 1. Experimental kinetics. Geochim. Cosmochim. Acta 52, 1077–1085 (1988)CrossRefGoogle Scholar
  43. Nies, L.F., Kapoor, V.: Biodegradation. In: Delleur, J.W.(eds) Handbook of Groundwater Engineering, pp. 1–26.  CRC Press LLC, New Jersey (1998)Google Scholar
  44. Nordstrom, D.K., Plummer, N., Langmuir, D., Busenberg, E., May, H.M., Jones, B.F., Parkhurst, D.L.: Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Melchior, D.C., Bassett, R.L. (eds.) Chemical Modeling of Aqueous Systems II, vol. 416, pp. 398–413. ACS Symposium Series (1990)Google Scholar
  45. Oya, S., Valocchi, A.J.: Transport and biodegradation of solutes in stratified aquifers under enhanced in situ bioremediation conditions. Water Resour. Res. 34(12), 3323–3334 (1998)CrossRefGoogle Scholar
  46. Parkhurst, L., Appelo, C.A.J.: User’s Guide To Phreeqc (Version 2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, U.S. Geological Survey, Water-Resources Investigations Report 99-4259, 312 pp. (1999)Google Scholar
  47. Parkhurst, D.L., Kipp, K.L., Engesgaard, P., Charlton, S.R.: PHAST—A Program for Simulating Ground-Water Flow, Solute Transport, and Multicomponent Geochemical Reactions: U.S. Geological Survey Techniques and Methods 6–A8, 154 p. (2004)Google Scholar
  48. Prommer, H., Barry, D.A., Davis, G.B.: Numerical modelling for design and evaluation of groundwater remediation schemes. Ecol. Model. 128, 181–195 (2000)CrossRefGoogle Scholar
  49. Rahman, K.S.M., Thahira-Ra, J., Lakshmanap, P., Banat, I.M.: Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour. Technol. 85(3), 257–261 (2002)CrossRefGoogle Scholar
  50. Rifai, H.S., Newell, C.J., Gonzales, J.R., Dendrou, S., Kenedy, L., Wilson, J. (1998) BIOPLUME III Natural Attenuation Decision Support System, User’s Manual Version 1.0, United States Environmental Protection Agency, Office of Research and Development, EPA/600/R-98/010Google Scholar
  51. Rimstidt, J.D., Newcomb, W.D.: Measurement and analysis of rate data: the rate of reaction of ferric iron with pyrite. Geochim. Cosmochim. Acta 57, 1919–1934 (1993)CrossRefGoogle Scholar
  52. Salanitro, J.P., Johnson, P.C., Spinnler, G.E., Maner, P.M., Wisniewski, H.L.: Field scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ. Sci. Technol. 34(19), 4152–4162 (2000)CrossRefGoogle Scholar
  53. Salmon, S., Malmström, M.: Steady state, geochemical box model of a tailings impoundment: application to Impoundment 1, Kristineberg, Sweden, and prediction of effect of remediation. Report in series of the MISTRA research programme: Mitigation of the environmental impact from mining waste. Stockholm, Sweden (2002)Google Scholar
  54. Singer, P.C., Stumm, W.: Acid mine drainage: the rate-determining step. Science 167, 1121–1123 (1970)CrossRefGoogle Scholar
  55. Strang, G.: On the construction and comparison of different schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)CrossRefGoogle Scholar
  56. Sudicky, E.A.: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour. Res. 22(13), 2069–2082 (1986)CrossRefGoogle Scholar
  57. Thullner, M., Schafer, W.: Modelling of a field experiment on bioremediation of chlorobenzenes in groundwater. Bioremediat. J. 3(3), 247–267 (1999)CrossRefGoogle Scholar
  58. US Environmental Protection Agency: How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: a Guide for Corrective Action Plan Reviewer. Solid Waste and Emergency Response EPA 510-R-04–002 (2004)Google Scholar
  59. Valocchi, A.J., Malmstead, M.: Accuracy of operator-splitting for advection–dispersion-reaction problems. Water Resour. Res. 28, 1471–1476 (1992)CrossRefGoogle Scholar
  60. Walter, A.L., Frind, E.O., Blowes, D.W., Ptacek, C.J., Molson, J.W.: Modeling of multicomponent reactive transport in groundwater: 1. Model development and evaluation. Water Resour. Res. 30(11), 3137–3148 (1994a)CrossRefGoogle Scholar
  61. Walter, A.L., Frind, E.O., Blowes, D.W., Ptacek, C.J., Molson, W.J.: Modeling of multicomponent reactive transport in groundwater: 2. Metal mobility in aquifers impacted by acidic mine tailings discharge. Water Resour. Res. 30(11), 3149–3158 (1994b)CrossRefGoogle Scholar
  62. Williamson, M.A., Rimstidt, J.D.: The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta 58(24), 5443–545 (1994)CrossRefGoogle Scholar
  63. Wong, J.W.C., Lai, K.M., Wan, C.K., Ma, K.K., Fang, M.: Isolation and optimization of PAH-degradative bacteria from contaminated soil for PAHs bioremediation. Water Air Soil Pollut 139(1–4), 1–13 (2002)CrossRefGoogle Scholar
  64. Wunderly, M.D., Blowes, D.W., Frind, E.O., Ptacek, C.J.: Sulfide mineral oxidation and subsequent reactive transport of oxidation products in mine tailings impoundments: A numerical model. Water Resour. Res. 32(10), 3173–3187 (1996)CrossRefGoogle Scholar
  65. Xu, T., White, P.S.P., Pruess, K., Brimhall, G.H.: Modeling of pyrite oxidation in saturated and unsaturated subsurface flow systems. Trans. Porous Media 39, 25–56 (2000)CrossRefGoogle Scholar
  66. Zheng, C., Wang, P.P.: MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems documentation and user’s guide; prepared for U.S. Army Corps of Engineers, Strategic Environmental Research and Development Program Contract Report SERDP-99–1 (1999)Google Scholar
  67. Zysset, A., Stauffer, F., Dracos, T.: Modeling of chemically reactive groundwater transport. Water Resour. Res. 30(7), 2217–2228 (1994)CrossRefGoogle Scholar
  68. Zysset, A., Stauffer, F., Dracos, T.: Modeling of reactive groundwater transport governed by biodegradation. Water Resour. Res. 30(8), 2423–2434 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Environmental SciencesBogazici UniversityBebek, IstanbulTurkey

Personalised recommendations