Skip to main content
Log in

Stabilizing effect of diffusion in enhanced oil recovery and three-layer Hele-Shaw flows with viscosity gradient

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In the presence of diffusion, stability of three-layer Hele-Shaw flows which models enhanced oil recovery processes by polymer flooding is studied for the case of variable viscosity in the middle layer. This leads to the coupling of the momentum equation and the species advection-diffusion equation the hydrodynamic stability study of which is presented in this paper.

Linear stability analysis of a potentially unstable three-layer rectilinear Hele-Shaw flow is used to examine the effects of species diffusion on the stability of the flow. Using a weak formulation of the disturbance equations, upper bounds on the growth rate of individual disturbances and on the maximal growth rate over all possible disturbances are found. Analytically, it is shown that a short-wave disturbance if unstable can be stabilized by mild diffusion of species, where as an unstable long-wave disturbance can always be stabilized by strong diffusion of species. Thus, an otherwise unstable three-layer Hele-Shaw flow can be completely stabilized by a large enough diffusion, i.e., by increasing enough the magnitude of the species diffusion coefficient. The magnitude of this diffusion coefficient required to completely stabilize the flow will depend on the magnitude of interfacial viscosity jumps and the viscosity gradient of the basic viscous profile of the middle layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almgren R.F. (1995). Crystalline Saffman–Taylor fingers. SIAM J. Appl. Math. 55: 1511–1535

    Article  Google Scholar 

  • Chouke R.L., Meurs P. and Poel C. (1959). The stability of a slow, immiscible, viscous liquid-liquid displacements in a permeable media. Petrol. Trans. AIME 216: 188–194

    Google Scholar 

  • Darcy, H.: Les Fontaines Publiques de la Ville de Dijon. Victor Dalmond (1856)

  • Daripa P., Glimm J., Lindquist B. and McBryan O. (1988). Polymer floods: A case study of nonlinear wave analysis and instability control in tertiary oil recovery. SIAM J. Appl. Math. 49: 353–373

    Article  Google Scholar 

  • Daripa P. and Pasa G. (2005). New bounds for stabilizing Hele-Shaw flows. Appl. Math. Lett. 18(11): 1293–1303

    Article  Google Scholar 

  • Daripa, P., Pasa, G.: A simple derivation of an upper bound in the presence of viscosity gradient in three-layer Hele-Shaw flows, J. Stat. Mech. 11 pp, P01014. doi:10.1088/1742-5468/2006/01/P01014 (2006)

  • Duchon J. and Roberts R. (1984). Evolution dune interface par capillarite et diffusion de volume I. Existence locale en temps. Ann. Inst. H. Poincare, Anal. Non Lineaire 1: 361–378

    Google Scholar 

  • Escher J. and Simonett G. (1996). On Hele-Shaw models with surface tension. Math. Res. Lett. 3: 467–474

    Google Scholar 

  • Gorell S.B. and Homsy G.M. (1983). A theory of the optimal policy of oil recovery by the secondary displacement process. SIAM J. Appl. Math. 43: 79–98

    Article  Google Scholar 

  • Hickernell F.J. and Yortsos Y.C. (1986). stability of miscible displacement processes in porous media in the absence of dispersion. Stud. Appl. Math. 74: 93–115

    Google Scholar 

  • Hill S. (1952). Channelling in packed columns. Chem. Eng. Sci. 1: 247–253

    Article  Google Scholar 

  • Homsy G.M. (1987). Viscous fingering in porous media. Ann. Rev. Fluid Mech. 19: 271–311

    Article  Google Scholar 

  • Howison S.D. (1986). Cusp development in Hele-Shaw flow with a free surface. SIAM J. Appl. Math. 46: 20–26

    Article  Google Scholar 

  • Kadanoff L.P. (1990). Exact solutions for the Saffman-Taylor problem with surface tension. Phys. Rev. Letts. 65: 2986–2988

    Article  Google Scholar 

  • Kessler D.A., Koplik J. and Levine H. (1988). Pattern selection in fingered growth phenomena. Adv. Phys. 37: 255–329

    Article  Google Scholar 

  • Littman W. (1988). Polymer Flooding: Developments in Petroleum Science Elsevier, Amsterdam, p. 24

  • Loggia D., Rakotomalala N., Salin D. and Yortsos Y.C. (1999). The effect of mobility gradients on viscous instabilities in miscible flows in porous media. Phys. Fluids 11(3): 740–742

    Article  Google Scholar 

  • McLean J.W. and Saffman P.G. (1981). Effect of surface tension on the shape of fingers in a Hele-Shaw cell. J. Fluid Mech. 102: 445–469

    Article  Google Scholar 

  • Needham R.B. and Doe P.H. (1987). Polymer flooding review. J. Pet. Technol. 12: 1503–1507

    Google Scholar 

  • Nie Q. and Tian F.R. (1998). in Hele-Shaw flows. SIAM J. Appl. Math. 58: 34–54

    Article  Google Scholar 

  • Otto F. and Weinan E. (1997). Thermodynamically driven incompressible fluid mixtures. J. Chem. Phys. 107: 10177–10184

    Article  Google Scholar 

  • Oztekin A., Cumbo L.J. and Liakopoulos A. (1999). Temporal stability of boundary-free shear flows: The effects of diffusion, Theor.. comp. fl. dyn. 13(2): 77–90

    Article  Google Scholar 

  • Pearson, H.J.: The stability of some variable viscosity flow with application in oil extraction, Cambridge Univ. Report (1977)

  • Saffman P.G. (1986). Viscous Fingering in Hele-Shaw Cells. J. Fluid Mech. 173: 73–94

    Article  Google Scholar 

  • Saffman P.G. and Taylor G.I. (1958). The penetration of a fluid in a porous medium or Hele-Shaw cell containing a more viscous fluid. Proc. Roy. Soc. A 245: 312–329

    Article  Google Scholar 

  • Shah D. and Schecter R. (1977). Improved Oil Recovery by Surfactants and Polymer Flooding. Academic Press, New York

    Google Scholar 

  • Shariati M. and Yortsos Y.C. (2001). Stability of miscible displacements across stratified porous media. Phys. Fluids 13(8): 2245–2257

    Article  Google Scholar 

  • Slobod R.L. and Lestz J.S. (1960). Use of a graded viscosity zone to reduce fingering in miscible phase displacements. Producers Monthly 24: 12–19

    Google Scholar 

  • Sorbie K.S. (1991). Polymer-Improved Oil Recovery. CRC Press, Boca Raton Florida

    Google Scholar 

  • Tanveer S. (2000). Surprises in viscous fingering. J. Fluid Mech. 409: 273–308

    Article  Google Scholar 

  • Tanveer S. and Xie X. (2003). Analyticity and nonexistence of classical steady Hele-Shaw fingers. Commun. Pure Appl. Math. 56: 353–402

    Article  Google Scholar 

  • Tian F.R. (1996). A Cauchy integral approach to Hele-Shaw problems with a free boundary: the case of zero surface tension. Arch. Ration. Mech. Anal. 135: 175–196

    Article  Google Scholar 

  • Uzoigwe A.C., Scanlon F.C. and Jewett R.L. (1974). Improvement in polymer flooding: The programmed slug and the polymer-conserving agent. J. Petrol. Tech. 26: 33–41

    Google Scholar 

  • Vasconceles G.L. and Kadanoff L.P. (1991). Stationary solutions for the Saffman-Taylor problem with surface tension. Phys. Rev. A. 44: 6490–6495

    Article  Google Scholar 

  • Xie X. and Tanveer S. (2003). Rigorous results in steady finger selection in viscous fingering. Arch. Ration. Mech. Anal. 166: 219–286

    Article  Google Scholar 

  • Yortsos Y.C. and Hickernell F.J. (1989). Linear stability of immiscible displacement in porous media. SIAM J. Appl. Math. 49(3): 730–748

    Article  Google Scholar 

  • Yortsos Y.C. and Zeybek M. (1988). Dispersion driven instability in miscible displacement in porous-media. Phys. Fluid 31(12): 3511–3518

    Article  Google Scholar 

  • Zhijun Z. and Yongmei H. (2002). Economic evaluation shows polymer flooding effectiveness. Oil & Gas Journal. 100(43): 56–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Daripa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daripa, P., Paşa, G. Stabilizing effect of diffusion in enhanced oil recovery and three-layer Hele-Shaw flows with viscosity gradient. Transp Porous Med 70, 11–23 (2007). https://doi.org/10.1007/s11242-007-9122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-007-9122-7

Keywords

Navigation