Skip to main content
Log in

Self-similar approximants of the permeability in heterogeneous porous media from moment equation expansions

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We use a mathematical technique, the self-similar functional renormalization, to construct formulas for the average conductivity that apply for large heterogeneity, based on perturbative expansions in powers of a small parameter, usually the log-variance \(\sigma_{Y}^2\) of the local conductivity. Using perturbation expansions up to third order and fourth order in \(\sigma_{Y}^2\) obtained from the moment equation approach, we construct the general functional dependence of the scalar hydraulic conductivity in the regime where \(\sigma_{Y}^2\) is of order 1 and larger than 1. Comparison with available numerical simulations show that the proposed method provides reasonable improvements over available expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramovich B., Indelman P. (1995). Effective permittivity of log-normal isotropic random media. J. Phys. A 28(3): 693–700

    Article  Google Scholar 

  • Baker G.A. Jr., Graves-Morris P. (1996). Padé Approximants. 2nd ed. Cambridge University Press, Cambridge

    Google Scholar 

  • Dagan G. (1989). Flow and transport in porous formations. Springer-Verlag, New York

    Google Scholar 

  • Dagan G. (1993). Higher-order correction of effective conductivity in heterogeneous formations of lognormal conductivity distribution. Transp. Porous Media 12: 279–290

    Article  Google Scholar 

  • De Wit A. (1995). Correlation structure dependence of the effective permeability of heterogeneous porous media. Phys. Fluids 7(11): 2553–2562

    Article  Google Scholar 

  • Dykaar B., Kitanidis P. (1992). Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach 2. Results. Water Resour. Res. 28(4): 1167–1178

    Article  Google Scholar 

  • Feng S., Halperin B.I., Sen P.N. (1987). Transport properties of continuum systems near the percolation threshold. Phys. Rev. B 35: 197–214

    Article  Google Scholar 

  • Gluzman S., Yukalov V.I. (1997). Algebraic self-similar renormalization in theory of critical phenomena. Phys. Rev. E 55: 3983–3999

    Article  Google Scholar 

  • Gluzman S., Yukalov V.I. (1998). Unified approach to crossover phenomena. Phys. Rev. E 58: 4197–4209

    Article  Google Scholar 

  • Gluzman S., Sornette D. (2002). Classification of possible finite-time singularities by functional renormalization. Phys. Rev. E 6601(N1 PT2): U315–U328

    Google Scholar 

  • Gluzman S., Sornette D., Yukalov V.I. (2003). Reconstructing generalized exponential laws by self-similar exponential approximants. Int. J. Modern Phys. C 14(4): 509–528

    Article  Google Scholar 

  • Gluzman, S., Yukalov, V.I., Sornette, D.: Self-similar factor approximants. Phys. Rev. E 67(2), art. 026109, DOI: 10.1103/PhysRevE.67.026109 (2003)

  • Guadagnini A., Neuman S.P. (1999). Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains, 2, computational examples. Water Resour. Res. 35(10): 3019–3039

    Article  Google Scholar 

  • Hsu K.-C., Zhang D., Neuman S.P. (1995). Higher-order effects on flow and transport in randomly heterogeneous porous media. Water Resour. Res. 32(3): 571–582

    Article  Google Scholar 

  • King P.R. (1989). The use of renormalization for calculating effective hydraulic conductivity. Transp. Porous Media 4: 37–58

    Article  Google Scholar 

  • Matheron G. (1967). Elements pour une theorie des milieux poreux. Masson et Cie, Paris

    Google Scholar 

  • Neuman S., Orr S. (1993). Prediction of steady state flow in nonuniform geologic media by conditional moments: exact nonlocal formalism, effective conductivities and weak approximation. Water Resour. Res. 29(2): 341–364

    Article  Google Scholar 

  • Noetinger, B.: The effective permeability of a heterogeneous porous medium. Institute Francais du Petrole, Division Gisements. Project: B-4332044 (1990)

  • Paleologos E.K., Neuman S.P., Tartakovsky D.M. (1996). Effective hydraulic conductivity of bounded, strongly heterogeneous porous media. Water Resour. Res. 32(5): 1333–1341

    Article  Google Scholar 

  • Shvidler M.I. (1962). Flow in heterogeneous media. Izv. Akad. Nauk SSSR. Mech. Zhidk. Gaza 3: 185

    Google Scholar 

  • Sornette D. (1988). Critical transport and failure exponents in continuum crack percolation. J. Physique (Paris) 49: 1365–1377

    Google Scholar 

  • Sornette D. (1999). Earthquakes: from chemical alteration to mechanical rupture. Phys. Rep. 313: 238–292

    Article  Google Scholar 

  • Sornette D. (2004). Critical Phenomena in Natural Sciences. Springer Series in Synergetics, Heidelberg

    Google Scholar 

  • Tartakovsky D.M., Neuman S.P. (1998a). Transient flow in bounded randomly heterogeneous domains: 1. Exact conditional moment equations and recursive approximations.. Water Resour. Res. 34(1): 1–12

    Article  Google Scholar 

  • Tartakovsky D.M., Neuman S.P. (1998b). Transient effective hydraulic conductivity under slowly and rapidly varying mean gradients in bounded three-dimensional random media. Water Resour. Res. 34(1): 21–32

    Article  Google Scholar 

  • Yukalov V.I. (1990). Statistical mechanics of strongly nonideal systems. Phys. Rev. E 42: 3324–4343

    Google Scholar 

  • Yukalov V.I. (1991). Method of self-similar approximations. J. Math. Phys. 32: 1235–1239

    Article  Google Scholar 

  • Yukalov V.I. (1992). Stability conditions for method of self-similar approximations. J. Math. Phys. 33: 3994–4001

    Article  Google Scholar 

  • Yukalov V.I., Yukalova E.P. (1994). Higher orders of self-similar approximations for thermodynamic potentials. Physica A 206: 553–580

    Article  Google Scholar 

  • Yukalov V.I., Yukalova E.P. (1996). Temporal dynamics in perturbation theory. Physica A 225: 336–362

    Article  Google Scholar 

  • Yukalov V.I., Gluzman S. (1997a). Self-similar bootstrap of divergent series. Phys. Rev. E 55: 6552–6570

    Article  Google Scholar 

  • Yukalov V.I., Gluzman S. (1997b). Critical indices as limits of control functions. Phys. Rev. Lett. 79: 333–336

    Article  Google Scholar 

  • Yukalov V.I., Gluzman S. (1998). Self-similar exponential approximants. Phys. Rev. E 58: 1359–1382

    Article  Google Scholar 

  • Yukalov V.I., Gluzman S. (1999). Weighted fixed points in self-similar analysis of time series. Int. J. Mod. Phys. B 13: 1463–1476

    Article  Google Scholar 

  • Yukalov V.I., Gluzman S., Sornette D. (2003). Summation of power series by self-similar factor approximants. Physica A 328: 409–438

    Article  Google Scholar 

  • Yukalov V.I., Yukalova E.P., Gluzman S. (1998). Self-similar interpolation in quantum mechanics. Phys. Rev. A 58: 96–115

    Article  Google Scholar 

  • Yukalov V.I., Gluzman S. (1999). Self-similar crossover in statistical physics. Physica A 273: 401–415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Sornette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gluzman, S., Sornette, D. Self-similar approximants of the permeability in heterogeneous porous media from moment equation expansions. Transp Porous Med 71, 75–97 (2008). https://doi.org/10.1007/s11242-007-9112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-007-9112-9

Keywords

Navigation