Skip to main content
Log in

Combined effect of thermal modulation and rotation on the onset of stationary convection in a porous layer

  • Original Paper
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The stability of a fluid-saturated horizontal rotating porous layer subjected to time-periodic temperature modulation is investigated when the condition for the principle of exchange of stabilities is valid. The linear stability analysis is used to study the effect of infinitesimal disturbances. A regular perturbation method based on small amplitude of applied temperature field is used to compute the critical values of Darcy–Rayleigh number and wavenumber. The shift in critical Darcy–Rayleigh number is calculated as a function of frequency of modulation, Taylor number, and Darcy–Prandtl number. It is established that the convection can be advanced by the low frequency in-phase and lower-wall temperature modulation, where as delayed by the out-of-phase modulation. The effect of Taylor number and Darcy–Prandtl number on the stability of the system is also discussed. We found that by proper tuning of modulation frequency, Taylor number, and Darcy–Prandtl number it is possible to advance or delay the onset of convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d :

Height of the porous layer

Da :

Darcy number, K / d 2

g :

Gravitational acceleration

K :

Permeability

l,m :

Wavenumbers in x, y-directions

p :

Pressure

Pr :

Prandtl number, ν/k

Pr D :

Darcy–Prandtl number, δPr / Da

q :

Velocity vector, (u, v, w)

R :

Darcy–Rayleigh number, βgΔTdK / ν k

t :

Time

T :

Temperature

Ta :

Taylor number, (2KΩ / δν)2

(x, y, z):

Space coordinates

α :

Horizontal wavenumber

β :

Thermal expansion coefficient

γ :

Specific heat ratio, (ρ c p ) m / (ρ c p ) f

δ :

Porosity

\({\varepsilon}\) :

Amplitude of modulation

ϕ :

Phase angle

κ :

Thermal diffusivity

μ :

Dynamic viscosity

ν :

Kinematic viscosity, μ / ρ0

ρ :

Density

Ω :

Angular velocity, (0, 0, Ω)

\({\bar{\omega}}\) :

Dimensional frequency of modulation

ω:

Non-dimensional frequency of modulation, \({d^{2}\bar{\omega} / \kappa}\)

b :

Basic state

c :

Critical

Osc:

Oscillatory

St:

Stationary

0:

Reference value

*:

Non-dimensional quantity

/:

Perturbed quantity

References

  • Caltagirone J.P. (1976). Stabilite d’une couche poreuse horizontale soumise a des conditions aux limite periodiques. Int. J. Heat Mass Transfer 19: 815–820

    Article  Google Scholar 

  • Chhuon B., Caltagirone J.P. (1979). Stability of a horizontal porous layer with timewise periodic boundary conditions. ASME J. Heat Transfer 101: 244–248

    Google Scholar 

  • Davis S.H. (1976). The stability of time periodic flows. Annu. Rev. Fluid Mech. 8: 57–74

    Article  Google Scholar 

  • Friedrich R. (1983). Einflub der Prandtl-Zahl auf die Zellularkonvektion in einem rotierendent mit Fluid gesattigten porosen Medium. Z. Angew. Math. Mech. 63: 246–249

    Google Scholar 

  • Ingham D.B., Pop I. (eds) (1998). Transport phenomenon in porous media. Pergamon, Oxford

    Google Scholar 

  • Jou J.J., Liaw J.S. (1987). Thermal convection in a porous medium subject to transient heating and rotation. Int. J. Heat Mass Transfer 30: 208–211

    Article  Google Scholar 

  • Lapwood E.R. (1948). Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44: 508–521

    Google Scholar 

  • Malashetty M.S., Basavaraja D. (2002). Rayleigh–Benard convection subject to time dependent wall temperature/gravity in a fluid saturated anisotropic porous medium. Heat Mass Transfer 38: 551–563

    Article  Google Scholar 

  • Malashetty M.S., Basavaraja D. (2003). Effect of thermal/gravity modulation on the onset of convection in a horizontal anisotropic porous layer. Int. J. Appl. Mech. Engng. 8(3): 425–439

    Google Scholar 

  • Malashetty M.S., Basavaraja D.(2004). Effect of time-periodic boundary temperatures on the onset of double diffusive convection in a horizontal anisotropic porous layer. Int. J. Heat Mass Transfer 47: 2317–2327

    Article  Google Scholar 

  • Malashetty M.S., Siddheshwar P.G., Mahantesh Swamy (2006). Effect of thermal modulation on the onset of convection in a viscoelastic fluid saturated porous layer. Transport Porous Media 62: 55–79

    Article  Google Scholar 

  • Malashetty M.S., Wadi V.S.(1999). Rayleigh–Benard convection subject to time dependent wall temperature in a fluid saturated porous layer. Fluid Dyn. Res. 24: 293–308

    Article  Google Scholar 

  • Nield D.A.(1995). Onset of convection in a porous medium with non-uniform time-dependent volumetric heating. Int. J. Heat Fluid Flow 16: 217–222

    Article  Google Scholar 

  • Nield D.A., Bejan A. (2006). Convection in Porous Media, 3rd edn. Springer-Verlag, New York

    Google Scholar 

  • Palm E., Tyvand A. (1984). Thermal convection in a rotating porous layer. Z. Andrew. Math. Phys. 35: 122–123

    Article  Google Scholar 

  • Patil P.R., Vaidyanathan G. (1983). On setting up of convection currents in a rotating porous medium under the influence of variable viscosity. Int. J. Engng. Sci. 21: 123–130

    Article  Google Scholar 

  • Qin Y., Kaloni P.N. (1995). Nonlinear stability problem of a rotating porous layer. Quart. Appl. Maths. 53(1): 129–142

    Google Scholar 

  • Rudraiah N., Malashetty M.S. (1990). Effect of modulation on the onset of convection in a sparsely packed porous layer. ASME J. Heat Transfer 122: 685–689

    Article  Google Scholar 

  • Straughan B. (2001). A sharp nonlinear stability threshold in rotating porous convection. Proc. Roy. Soc. Lond. A 457: 87–93

    Google Scholar 

  • Straughan B. (2006). Global non-linear stability in porous convection with a thermal non-equilibrium model. Proc. Roy. Soc. Lond. A 462: 409–418

    Article  Google Scholar 

  • Vadasz P. (1998). Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. J. Fluid Mech. 376: 351–375

    Article  Google Scholar 

  • Vadasz P. (2000). Flow and thermal convection in rotating porous media. In: Vafai K. (ed) Handbook of Porous Media. Marcel Dekker, Inc, New York, pp 395–440

    Google Scholar 

  • Vafai K. (2000). Handbook of Porous Media. Marcel Dekker, New York

    Google Scholar 

  • Venezian G. (1969). Effect of modulation on the onset of thermal convection. J. Fluid Mech. 35: 243–254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Malashetty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malashetty, M.S., Swamy, M. Combined effect of thermal modulation and rotation on the onset of stationary convection in a porous layer. Transp Porous Med 69, 313–330 (2007). https://doi.org/10.1007/s11242-006-9087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-9087-y

Keywords

Navigation