Advertisement

Transport in Porous Media

, Volume 67, Issue 3, pp 473–486 | Cite as

An analysis of species separation in a thermogravitational column filled with a porous medium

  • Hadi Nasrabadi
  • Hussein Hoteit
  • Abbas FiroozabadiEmail author
Original Paper

Abstract

In the past, the analysis of species separation in a thermogravitational column filled with porous media has been based on strong dependency of thermal and molecular diffusion to dispersion. In this work, we suggest an alternative and show that the dispersion effect is negligible for the conditions in a packed hermogravitational column and that compositional dependency of the thermal diffusion should be accounted for.

Keywords

Thermal diffusion Thermogravitational column Natural convection and diffusion Porous media flow Multicomponent diffusion in porous media 

Nomenclature

b

olumn width, m

h

olumn height, m

Nc

umber of components

p

Pressure, Pa

t

Time, s

Ui

Total molar flux of component i per volume, mole/s m3

x, z

Coordinates

V

Volume, m3

Subscripts

 

0

Reference point

f

Fluid

i, j

Component

r

Rock

Superscripts

 

n

Time step

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acs G., Doleschall S., Farkas E.(1985). General purpose compositional model. Soc. Pet. Eng. J. 25, 543-553Google Scholar
  2. Bahloul A., Yahiaoui M.A., Vasseur P., Robillard L. (2004). Thermogravitational separation in a vertical annular porous layer. Int. Comm. Heat Mass Transfer 31(6): 783-794CrossRefGoogle Scholar
  3. Bear J.(1972). Dynamics of Fluids in Porous Media. American-Elsevier, New YorkGoogle Scholar
  4. Brewer, A.K., Bramley, A.: U.S. Pat. 2253594 (1942)Google Scholar
  5. Clusius K., Dickel G. (1938). New process for separation of gas mixtures and isotopes. Naturwiss 26, 546CrossRefGoogle Scholar
  6. Costeseque, P.: Sur la migration selective des isotopes et des elements par thermodiffusion dans les solutions. Applications de l’effet thermogravitationnel en milieu poreux; observations experimentales et consequences geochimiques. PhD dissertation, U. Paul Sabatier, Toulouse, France (1982)Google Scholar
  7. Costeseque P., Fargue D., Jamet P.(2002). Thermodiffusion in porous media and its consequences. Lect. Notes Phys. 584, 389-427CrossRefGoogle Scholar
  8. Debye P., Bueche A.M. (1948). High Polymer Physics. Chemical Publishing Co., BrooklynGoogle Scholar
  9. El Maataoui, M.: Consequences de la Thermodiffusion en Milieu Poreux sur l’Hydrolyse des Solutions de Chlorures Ferriques et sur les Migrations d’Hydrocarbures dans les Melanges de n-Alcanes et dans Un Petrole Brut: Implications Geochimiques. PhD dissertation, U. Paul Sabatier, Toulouse, France (1986)Google Scholar
  10. Fargue D., Jamet Ph., Costesque P.(1998). Dispersion phenomena in thermal diffusion and modeling of thermogravitational experiments in Porous Media. Transport in Porous Media 30, 323-344CrossRefGoogle Scholar
  11. Firoozabadi A. (1999). Thermodynamics of Hydrocarbon Reservoirs. McGraw-Hill, New YorkGoogle Scholar
  12. Firoozabadi A., Ghorayeb K., Shukla K.(2000). Theoretical model of thermal diffusion factors in multicomponent mixtures. AIChE J. 46(5): 892-900CrossRefGoogle Scholar
  13. Furry W.H., Jones R.C., Onsager L.(1939). On the theory of isotope separation by thermal diffusion. Phys. Rev. 55, 1083-1095CrossRefGoogle Scholar
  14. Ghorayeb, K., Firoozabadi, A. (2000a). Modeling multicomponent convection and diffusion in porous media. Soc. Pet. Eng. J. 5, 158-171Google Scholar
  15. Ghorayeb K., Firoozabadi A. (2000b). Molecular, pressure, and thermal diffusion in non-ideal multicomponent mixtures. AIChE J. 46(5): 883-891CrossRefGoogle Scholar
  16. Ghorayeb K., Anraku T., Firoozabadi A. (2003). Interpretation of the fluid distribution and GOR behavior in the Yufutsu fractured gas-condensate field. Soc. Pet. Eng. J. 8, 114-123Google Scholar
  17. Jamet Ph., Fargue D., Costesque P., Cernes A. (1992). The thermogravitational effect in porous media: a modeling approach. Trans Porous Media 9, 223-240CrossRefGoogle Scholar
  18. Jamet Ph., Costesque P., Fargue D. (1996). Determination of the effective transport coefficients for the separation of binary mixtures of organic compounds into packed thermal diffusion columns. Chem. Eng. Sci. 51(19): 4463-4475CrossRefGoogle Scholar
  19. Jhaveri B.S., Youngren G.K. (1988). Three parameter modification of the Peng–Robinson equation of state to improve volumetric predictions. Soc. Pet. Eng. Res. Eng. 3, 1033-1040Google Scholar
  20. Labrosse G. (2003). Free convection of binary liquid with variable Soret coefficient in thermogravitational column: the steady parallel base states. Phys. Fluids 15(9): 2694-2727CrossRefGoogle Scholar
  21. Lorenz M., Emery A.H. (1959). The packed thermal diffusion column. Chem. Eng. Sci. 11, 16-23CrossRefGoogle Scholar
  22. Lohrenz J., Bray B., Clark R.(1964). Calculating viscosities of reservoir fluids from their compositions. J. Pet. Tech. 16, 1171-1176Google Scholar
  23. Marcoux, M., Charrier-Mojtabi, M.C.: Etude parametrique de la thermogravitation en milieu poreux. Acad. Sc. Paris 326, series II b, 539–546 (1998)Google Scholar
  24. Peng D.Y., Robinson D.B. (1976). A new two-constant equation of state. Ind. Eng. Chem. Fund. 15(1): 59-64CrossRefGoogle Scholar
  25. Perkins, T.K., Johnston O.C.: A review of diffusion and dispersion in porous media. Soc. Pet. Eng. J. 70–84 (1963)Google Scholar
  26. Rabinovich G.D., Shinkevic V.I., Azroya K.K. (1979). Thermal diffusion separation of isotopes in solutions. J. Eng. Phys. Therm. 37, 808-812Google Scholar
  27. Saffman P.G. (1959). A theory of dispersion in a porous medium. J. Fluid Mech. 6, 321-349CrossRefGoogle Scholar
  28. Schott, J.: Contribution a letude de la thermodiffusion dans les milieux poreux. Application aux possibilities de concentration naturelles. PhD dissertation, Universite Paul Sabatier, Toulouse, France (1973)Google Scholar
  29. Watts J.W. (1986). A compositional formulation of the pressure and saturation equations. Soc. Pet. Eng. J. 1, 243-252Google Scholar
  30. Whitson, C.H., Belery P.: Compositional gradients in petroleum reservoirs, Paper SPE 28000 presented at The U. of Tulsa Centennial Pet. Eng. Symposium, Tulsa, Oklahoma, 29–31 August (1994)Google Scholar

Copyright information

© Springer Science+Business Media M.V. 2006

Authors and Affiliations

  • Hadi Nasrabadi
    • 1
  • Hussein Hoteit
    • 1
  • Abbas Firoozabadi
    • 2
    • 3
    Email author
  1. 1.Department of Earth Science and EngineeringImperial CollegeLondonUK
  2. 2.Reservoir Engineering Research Institute (RERI)Palo AltoUSA
  3. 3.Department of Chemical EngineeringYale UniversityNew HavenUSA

Personalised recommendations