Skip to main content
Log in

On Ions Transport during Drying in a Porous Medium

  • Original Paper
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Salt crystallisation at the surface or in a porous medium has been recognised as a major mechanism of deterioration of buildings and historical monuments. Often crystallisation occurs when the concentration of salt dissolved in the water contained in the porous medium reaches the saturation concentration as the result of evaporation. In order to predict the evolution of the ion distribution during drying, we develop a simple volume averaged model combining a semi-analytical model of drying with the numerical computation of the ions transport. The model is used to analyse the influence of the drying rate, size of the porous medium, average pore size and initial ion concentration on the ion distribution during drying and therefore the possible location of crystallisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benavente D., Garcia del Cura M.A., Garcia-Guinea J., Sanchez-Moral S., Ordenez S. (2004). Role of pore structure in salt crystallization in unsaturated porous stone. J. Crys. Growth. 260(3–4):532–544

    Article  Google Scholar 

  • Ben Nasrallah S., Damak O., Ben Dhia H., Arnaud G. (1991). Transfert de soluté au cours du séchage convectif. Int. J. Heat Mass Transfer 34:911–917

    Article  Google Scholar 

  • Bouhlila, R.: Ecoulements transports et réactions Géochimiques couplés dans les milieux poreux. Cas des sels et des saumures, Ph.D Thesis, ENIT, Tunis (1999)

  • Buenfeld, N.R., Shurafa-Daoudi, M.-T., McLoughlin, I.M.: Chloride transport due to wick action in concrete. In: Nilsson, L.O., Ollivier, J.P. (eds.) Chloride Penetration into Concrete, pp. 315–324, RILEM, Paris, (Proc. RILEM Int. Workshop on Chloride Penetration into Concrete, 1995).

  • Camassel B., Sghaier N., Prat M., Ben Nasrallah S. (2005). Ions transport during evaporation in capillary tubes of polygonal cross section. Chem. Eng. Sci. 60:815–826

    Article  Google Scholar 

  • Coussot P. (2000). Scaling approach to the convective drying of a porous medium. Eur. Phys. J. B 15:557–566

    Article  Google Scholar 

  • Durán J.D.G., Ontiveros A., Chibowski E., González-Caballero F. (1999). Deposition of Colloidal Zinc Sulfide on Glass Substrate. J. Colloid Interf. Sci. 214:53–63

    Article  Google Scholar 

  • Febvre, C.: Modélisation de l’évaporation naturelle sur un salin. Mémoire Diplôme d’Ingénieur, CNAM (1982)

  • Finkayson B.C. (1992). Numerical Methods for Problems with Moving Fronts. Ravenna Park Publishing, Seatttle, WA

    Google Scholar 

  • Flatt, R.J., Scherer, G.W.: Hydration and crystallization pressure of sodium sulfate: a critical review. In: Materials Issues in Art and Archaeology—Symposium 2001, vol. 712, pp. 29–34. (Boston 2002)

  • Huinink H.P., Pel L., Michels M.A.J. (2002a). How ions distribute in a drying porous medium: A simple model. Phys. fluids 14(4):1389–1395

    Article  Google Scholar 

  • Huinink H.P., Pel L.J., Michels M.A., Prat M. (2002b). Drying processes in the presence of temperature gradients. Pore –scale modelling. Eur. Phys. J. E. 9:487–498

    Article  Google Scholar 

  • Huinink, H. P., Pel, L., Michels, M.A.J.: Structure and transport properties of liquid clusters in a drying porous medium. Phys. Rev. E, 68, 056114 (2003)

    Google Scholar 

  • Goudie A., Viles H. (1997). Salt Weathering Hazards. Wiley, Chichester

    Google Scholar 

  • Laurindo J.B., Prat M. (1998). Numerical and experimental network study of evaporation in capillary porous media. Drying rates. Chem. Eng. Sci. 53(12):2257–2269

    Google Scholar 

  • Le Bray Y., Prat M. (1999). Three dimensional pore network simulation of drying in capillary porous media. Int. J. Heat and Mass Transfer 42:4207–4224

    Article  Google Scholar 

  • Lim P.C., Barbour S.L., Fredlund D.L. (1998). The influence of degree of saturation on the coefficient of aqueous diffusion. Can. Geotech. J. 35:811–827

    Article  Google Scholar 

  • Kaviany M. (1991). Principles of heat transfer in porous media mechanical engineering series. Springer-verlag, New York

    Google Scholar 

  • Krisher, O.: Die wissenschaftlichen Grundlagen der Trocknungstechnik, 1, 298, Springer, Berlin (1963).

  • Masmoudi W., Prat M. (1991). Heat and mass transfer between a porous medium and a parallel external flow, application to drying of capillary porous materials. Int. J. Heat Mass Trans. 34(8):1975–1989

    Article  Google Scholar 

  • Mayer G., Wittmann F.H. (1996). Ein modell zur Beschreibung des Wasser-und Salztransports in Mauerwerk. Int. Zeitschrift für Bauinstandsetzen 2(1):67–82

    Google Scholar 

  • Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. HPC, Washingdon, DC: Hemisspere (1980).

  • Pitzer K.S. (1973). Thermodynamics of electrolytes, I. Theorical basis and general equations. J Phys. Chem. 77:268–277

    Article  Google Scholar 

  • Prat M. (2002). Recent advances in pore-scale models for drying of porous media. Chem. Eng. J. 86(1–2):153–164

    Article  Google Scholar 

  • Puyate Y.T., Lawrence C.J. (1999). Effect of solute parameters on wick action in concretre. Chem. Eng. Sci. 54:4257–4265

    Article  Google Scholar 

  • Scherer G.W. (1999). Crystallization in pores. Cement concrete Res. 29:1347–1358

    Article  Google Scholar 

  • Sghaier, N., Prat, M, Ben Nasrallah, S.: On the influence of sodium chloride concentration on equilibrium contact angle. Chem. Eng. J. (2006, in press). Institut National Polytechnique de Toulouse and Ecole Nationale d’Ingénieur de Monastir, in preparation.

  • Sghaier, N., Prat, M., Ben Nasrallah, S.: Drying processes in the presence of salt, pore scale modeling, Proceedings of ICAPM 2004, pp. 573–578, 24–27 May 2004, Évora, Portugal (2004)

  • Stauffer D. Aharaony A. (1992). Introduction to Percolation Theory. Taylor & Francis, London

    Google Scholar 

  • Van Brakel J. (1980). Mass transfer in convective drying. In: Mujumdar A.S. (eds) Advances in Drying. Hemisphere, New-York, pp. 217–267

    Google Scholar 

  • Whitaker S. (1999). The Method of Volume Averaging. Kluwer Academic publishers, Dordrecht

    Google Scholar 

  • Yiotis A.G., Boudouvis A.G., Stubos A.K., Tsimpanogiannis I.N., Yortsos Y.C. (2004). The effect of liquid films on the drying of porous media. AiChE J. 50(11):2721–2737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sghaier, N., Prat, M. & Nasrallah, S.B. On Ions Transport during Drying in a Porous Medium. Transp Porous Med 67, 243–274 (2007). https://doi.org/10.1007/s11242-006-9007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-006-9007-1

Keywords

Navigation